OpenGL Reference Manual (Addison-Wesley Publishing Company)

Contents

CONTENTS 1
OPENGL REFERENCE MANUAL 5
THE OFFICIAL REFERENCE DOCUMENT FOR OPENGL, RELEASE 1 .. .uuuviiiiiiiiiiiiiieiieee ettt e e e 5
PREFACE 6
WHAT YOU SHOULD KNOW BEFORE READING THIS MANUALccoiiiiiiiiiireeeeeeeeeeciieeeeeeeeeeettaeeeeeeeeeeinaneeeseeeeeannseeeeeeens 6
ACKNOWLEDGMENTSuutuiiiiiieeieiiitteeeeeeeeetitseeeeeeeeetttsaeeeeeeeaattsareseeeeaaettasseaeeeeaaatssseseeeesaastsseseeeeeeaasssseseseeeanaanrsseeeeeans 7
CHAPTER 1 INTRODUCTION TO OPENGL 8
OPENGL FUNDAMENTALSoetiettttttteeetieoiteeeeeeeseesiaeeeeseeeeesiaeseessesseesisasssteesseasrtatsseesssasstessteessssssssssseeesssssssrssseeeeessmnsnes 8
BASIC OPENGL OPERATIONcoitiiuuutieiieeieeitteeeeeeeeeseteeeeeeeseesstassteessesssstasseeessssastasssesssssssstasseeseessossaeseessessensarseeeeesss 9
CHAPTER 2 OVERVIEW OF COMMANDS AND ROUTINES 11
OPENGL PROCESSING PIPELINE.......ccceiiiiiiiiiriieeeeeeeeiittreeeeeeeeeeiaaeeeeeeeeeeitseseeeeeeesessseeeeeeeeeetssseseseeseeassseseeeeeennsrrsreeeeeas 11
ADDITIONAL OPENGL COMMANDSovviiiiieiiitirieeeeeeeeeiiteeee e e e eeeeitaeeeeeeeeeeittaseeeeeeeestisaareaeeeeeeessssreseseseeesrsreseseeeeennreeeens 17
OPENGL UTILITY LIBRARYcoiiuttiiiieeeeeiiiitteeeeeeeeeciareeeeeeeeeeitaaeeeeeeeeesttreseeeeeeesettssseeeseeeeetssseeeeeeeaeasssseseseseeansrrereeeeeas 20
OPENGL EXTENSION TO THE X WINDOW SYSTEMuvviiiiiiiiiiiiieieeeeeeeiiiiereeeeeeeeeiineeeeeeeeeesisssssseeseessisssseesesesssssssssesees 22
CHAPTER 3 SUMMARY OF COMMANDS AND ROUTINES 25
J N0 VNS N (0) ORI 26
(0] 525 N(€ 3 BN 6001 1Y 7N\ 01RO 27
GLU ROUTINES ..otiiee ettt ettt e e ettt e e e e e et e e e eeseeaaaaeeeeeeseenaataeseeeeseesataaseeeeessastaaseeeeessaasaaaaseseesesnssraneeeeeas 34
(€355, Q0 20] 0 ¥ 1) 21 RO 36
CHAPTER 4 DEFINED CONSTANTS AND ASSOCIATED COMMANDS 38
CHAPTER 5 OPENGL REFERENCE PAGES 49
(€3 072N @l 16 RO 49
GLALPHAFUNC ...ttt ettt e e e e et e e e e e et e e eeeeeeesataaeeeeeeesestaaseeeeessaesaaaeseseeseensrtaneeeeeas 51
(€323 20C) | SRR OPRRPRR 53
GLBITMARP ...ttt et ettt e e e e e e et e e e e eeeeeaaaaaeeeeeeseesaataeeeeeeseesataaeeeeeessastaaseeesessaanssaaeseeeeseensrrareeeeeas 56
(€323 525) 0 216 (RPN 58
(€3 507N 5 5 35 13 LSRRI 61
(€3 507N B 5 55 153 TSRO 62
(€3 501 20N SRR 64
GLOCLEARAGCCUM ..ottt ettt e e ettt e e e e e eeaa et e e e e seeaaaaeeeeeeeeesaaaaeseeeeseenataaeeeeeessestaaseeeeessannssaaeeesesseansrraneeeeeas 66
(€ B 015 20N L 0T0) 0] ORI 67
(€3 B0 020N 21 D) 21 i 5 RO 68
(€3 B0 520N 2 0]) 25 PRSPPI 69
GLOCLEARSTENCILcooieuutietiee e eeeeetteeeeeeeeeeeaaeeeeeeeeseeaaaseeeeeeseeasaaaeseeesseasataeseeeeseeaataasseesesseantaasseeeessanssaaaeseeessennsareneeeeeas 70
(€3 5015 12d 4 07N) R RRRRPTR 71
(€3 50L6) 50 WO 72
(€3 B 0L0) 50) 201 VN) SRR 74
(€3 B 0L0) 50) 201 VN N 233 VN SRRSO 75
(€3 5006) 20 104 23 5 RO 77
(€35 018) 5 5 27N ©) RO 80
(€30 D) 238 1 21 0 3 AR 81
(€301 D) 232151 210 (ISR 82
(€30 D) 231 1Y NS RO 84
GLDEPTHRANGEcoiiiiutiiiiie ettt e ettt e e e e e ee et e e e e s eeeaaaeeeeeeseesataeeeeeeseesataaeeeeeesaestaaseeeeessanssaaeeesessennsreaneeeeeas 85
(€30 D) ¥\ 18] 3 3 =) RO 86
GLDRAWPTXELSooiiiiieitieeee ettt e ettt e e e e e ee et e e e e seeaaaaeeeeeeeeesaataeseeeeseesataaseeeeessesbaaseeeeessaassaaeseseeseensraaneeeeeas 89
(€301 230 1€] 2] S0 7€ J RO 95

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GLENABLEcooiittiieietiee ettt e et e e et e e e e te e e e eta e e e eaeeeeeesseeeeeaseaeeesseeeeessseeeeassseeansseeeaeasseeeaaseseeansseeeenaseeeeanneeaeans 96
GLEVALCOORD.....ccoiutiii ettt ettt eeee e e ettt e e e et e e e etaee e e e taeeeeeaaeeeeetaeeeeassaeeesseeeeassaseeesseeeeessseseesssseeensseseeesaeseennseeas 102
GLEVALMESH......ooiiitiii ettt ettt e et e e et e e e et e e e e ette e e e eateeeeeataeeeetssaeeaaseeeeeassaeeeasseeeeasssaeeenssseeenssesesesseeeennseens 104
GLEVALPOINT ..ottt et e e e et e e e et e e e e e taee e e tteeeeeateeeeeaaaeeeaaseeeeesseeeeetsseeessseseeensaeeeensseeas 107
GLFEEDBACKBIUFFER.........cuoiiiiiiiieeitiie e eetee e ettt e e et e e et e e e e taeeeeeaaeeeeetaeeeeetaeeeeeateaeeesseeeeetseeeeessseeeenssseeasseaeeensaeeeanaseens 109
GLEINISH. ...ttt ettt e e e ettt e e e et e e e et tee e e tteeeeeateeeeeataeeeessseeeassseeeeasaseessseeeeansseeeessseeeasseseeesseseensseeas 112
GLELUSH ...ttt et e et e e e et e e e et e e e e tteeeeeateeeeeataeeeeetteeeeeasseeeeseeeessseeeeensseeeessseeeasseseseseeeeenaseens 112
GLEOG ..ottt e e e e e et e e et e e et e e e tteeeeeteeeeeat—aeeae—eaeeetaaeeeattaaeeateaeeeataeeeanareeas 113
GLERONTEACEceiiitiii et e e e et e e e et e e e et ee e e tte e e eeateeeeeasaaeeetaeseeeaseeeeenssseeeasseaeeensaeseenasenas 116
GLERUSTUMuttiiiiitiee e eettee ettt e et e e ettt e e e et e e e etae e e e tae e e eeateeeeetaeeeetsseeeasteeeeeasaseeesseseeessseesenssseeeasssaeeesseseenssenas 117
GLGENLISTS ... ttiie ettt e et e ettt e e e et e e e e etaee e e taeeeeeateeeeeateeeeetseeeeasseeeeaasaaeeessseeeessseeeenseseeeasseeesesseeeennsenns 120
GLGET .1ttt ettt e et e e e oot e e e et e e e e aee e e etae e e e eateeeeeeasaeeeeateeeeeasseeeetaeeeeseeeeeasteeeeetaaeeaataeeeeetaeeeeatteeeeateaeeetaeeeenareeas 121
GLGETCLIPPLANE ..ottt et e e et e e et e e ettt e e e eateeeeeataeeeeateaeeeateeeeeasaeeeesseeeeessseseenseseeensseseeensseseensseeas 142
GLGETERRORoooiiitiiiieie ettt e e e et e e e et e e e et e e e e tte e e eeateeeeeaaaeeetaeeeeensseeeenseseeensseaeeensneseensseeas 143
GLGETLIGHT ...ttt et e e et e e et e e e tte e e e eate e e e e taeeeetteeeeeateeeeeasaeeeeaaaeeeeesssaeeenseseeeasseaesesseeeennseeas 144
GLGETIMARP. ...ttt et e et e e et e e e et e e e e tteeeeeatee e e e teeeeeassseeeesseeeeeaseseeesseseeessaeeeenssseeensseaeeensaeeeenaseeas 147
GLGETIMATERIAL.uttiieettee e oottt e ettt e e ettt e e e et e e e eatee e e eaaee e eeaaeeeeeaaeeeeetaeeeeasseeeassseseasssseesesseeeeessseeeenssseeansseseeensseeeensseens 149
GLGETPIXELMARP.ottt ettt e e e e e tte e e e eate e e e etaee e etteeeeeateeeeeasaaeeetseeeeessseeeenseeeeensseseeensaeeeensseeas 151
GLGETPOLYGONSTIPPLE.......cciutiiiiittieeeitteeeeetieeeeetee e eeetaeeeeetteeeeeteeeeeeaaeeeeetseeeeeateseeasseeeaesseseeessseseenssseeensseeeannseeseasseens 153
GLGETSTRINGoeieiiutiieeeetteeeeetteeeeette e e e aeeeeeaaeeeeeateeeeeeaseeeeeateeeeessseseeseseeessseeeassseeeassseeeasseseeessseseenssseeeassesesensseseensseeas 154
GLGETTEXENV ...ttt e e e et e e e et e e e et e e e ettt e e eeateeeeetaaeeeetaeeeeeaseeeeenssseeensseeeeesaeseensseens 155
GLGETTEXGENceiitiii ettt eet e e oot e e e et e e e etaee e e tteeeeeateeeeetaeeeeeateaeeastseeeaasseeesesseseeassseseenssseeensseseeesseseensseens 157
GLGETTEXIMAGE ...ttt et e e e oot e e e et e e e etaee e e tteeeeeateeeeeataaeeeesseeeeeaseeeeenssseeensseseeensaeeeensseens 158
GLGETTEXLEVELPARAMETER.........cutiiiiitiiee ettt e eetee e e et e e e ettt e e e et e e e e taee e eeateeeeeateeeeeaaeeeeeaaeeeeeaaseseessseeensseeeeesseeeeenrenens 160
GLGETTEXPARAMETERoooiiutiiiiitiieeeettee e eete e e ettt e e et e e e eaae e e e et e e e etaeeeeetteaeeesteeeeeasaaeeaetseeeeessseseenssseeasseeeeenseeseessnens 162
GLHINT Lottt ettt e e et e e e et e e e tae e e e eaaeeeeetaeeeetteeeeeateeeeeasaaeeasseeeeenaeeeeessseeeasseeeeesaeeeennseeas 164
GLINDEXcttiiietteee ettt e e et e e e et e e e eate e e e ettee e eetteeeeeaseeeeeataeeeesteeeeesseaeeeaseseeesseeeeensseeeeseseeeaaseaeeesaeeeenateeas 166
GLINDEXIMASKoiiieutiieeettee e eette e oottt e e ettt e e e et e e e eate e e e eatee e eeaaeeeeeaseeeeeataeeeessseeeasssaeeeassseeesseeeeessseseenseseeensseaesensaeeeensseens 167
GLINITINAMESteee ettt ettt ettt e e ettt e e ettt e e e eate e e e ettee e eeateeeeeasseeeeataeeeessseeeesssaeeeasseeeesseeeeessseeeenseseeensseseeensseeeennsnens 168
GLISENABLEDooiiitiieeeittee e ettt e ettt e e ettt e e ettt e e e ete e e e eateeeeeateeeeeaseeeeetaeeeesseaeeassseeeeasaseeesseeeeessseesenssseeeasseaesensseeeenssenas 169
GLIS LIS T .ttt ettt e e e et e e e et e e e et e e e e tteeeeeatteeeetteeeeetteeeeateeeeaittaeeaetteeeeaaaeeeeatteeeeateaeeeaaeeeanateeas 174
GLLIGHT ...ttt et e e e ettt e e e et e e e ettee e e tteeeeeateeeeeataeeeeaseeeeasssaeeeasseeeasseeeeensseeeenssseeeasseaeeesseseenaseeas 174
GLLIGHTIMODELuutiiiiiitie e ettt e et e e e et e e e et e e e e taee e e taeeeeeaaeeeeeataeeeesseaeeassseeeasssaeeasseseeessseeeenssseeensseaeeensseeeensseens 178
GLLINESTIPPLEooeiiutiieieittee e oottt e e eeete e e ettt e e e ettt e e e eate e e e eaaee e eeaaeeeeeasseeeeaaaeeeessseeeassseeeenssseessseseeassseseenssseeensseseeesseseeesseeas 181
GLLINEWIDTHooiiiitiiieetiie ettt ettt ee e e e et e e e et e e e eaae e e e etteeeeeateeeeetaeeeesseaeeasseeeeeasseeessseseeessseseenseseeenssesesensseeeenssenas 182
GLLISTBASE. ... ettt e et e e et e e et e e e e et e e e etaee e eetteeeeeateeeeeasaaeeetaeeeeeassaeeensssaeensseaeeesseeeenaseeas 184
GLLOADIDENTITY ...utiiiiettiee oottt e eett e e ettt e e e ettt e e e etee e e eaaeeeeeaaeeeeeaaeeeeetaeeeesseaeeasssaeeassseesesseseeessseeeenssseeensseseeenseeeeenssneas 185
GLLOADMATRIXoutiieeettee e eette e e ettt e e ettt e e e ettt e e e eatee e e eaaeeeeeateeeeeasseeeeataeeeesssaeeassseeeanssseeasseseeessseseesssseeensssaeeenssneeensseens 186
GLLOADINAMEoooiiitiiieeittee et e et e e e et e e e et e e e eeatee e eetteeeeeateeeeetaeeeesseeeeassseeeesseeeesseseeessseseenssseeensseseeensseeeenssenas 187
GLLOGICORP..... ..t et e e et e e et e e e tte e e e eate e e e etaeeeetteeeeaateeeeeasseeeesseseeasssseeenssseeeasseaeeesaeeeenssnens 188
GLIMAP L ..o e et e e e et e e e et e e e e taee e e ttaeeeeateeeeettaeeaetaeaeeattaeeeatteaeeateaeeetaeeeanateeas 190
GLIMIAPZ ...t e e e e et e e et e e e et e e e tte e e e ett e e e eetteeeetteeeeateeeeaattaeeaetteaeeataeeeeatteeeeateaeeeataeeeeaateeas 194
GLIMAPGRIDuuviieiietiieeeettee ettt e ettt e e et e e e et e e e eateeeeettee e e aaeeeeeatseeeeasaseeessseeeassseeeaassseeesseseeensseeeenseseeeasseaesensseaeenssenns 199
GLIMATERIALcutiieieitiee e ettt e ettt e et e e ettt e e e ettt e e e et e e e eaaee e e aaeeeeeateeseeasaseeessseeeasseaeeensseeeesseeeeesssaeeenssseeensssseeesseeeenssenas 201
GLIMATRIXIMODEoutiiiiiiiee e ettt eeee e e ettt e e et e e e et e e e tae e e eeaaeeeeeataeeeeaseeeeeaseeeeeasseeeesseeeeessseeeenseseeansseseeensaeeeensseens 204
GLIMULTIMATRIX. ... cttteeeettee e oottt e e et e e et e e e et e e e eateeeeeaaeeeeaaeeeeeasseeeeasaeeeessseeeasssaeeesssseeasseeeeessseseenssseeensseseeensseeeensseens 205
GLINEWLIST ..ottt ettt e e et e e et e e e e tteeeeeateeeeeataeeeeteeeeeeaseaeeeasaaeeesseseeessseeeenssseeensssaeeesseeeenasenas 206
GLINORMALuttiieeetiee e ettt e et e e et e e et e e e etae e e e eateeeeetaee e e aaeeeeeatseeeeteseeesseeeeasseaeeessseeeasseeeeessseseenssseeensseseeesseeeensseeas 208
GLORTHOttt et eetee e et e e et e e et e e ettt e e e eatae e e eateeeeetteeeeeasseeeeateseeesseeeeessseeeeassseeesseeeeansseeeenssseseasseseeensseseensseens 210
GLPASSTHROUGHuviiiittiee et et eee ettt e e et e e et e e e tae e e e eaaeeeeeataeeeetteeeeeateeeeeasseeeesseeeeessseeeenseseeensseseeensaneeensseeas 211
GLPIXELMARP ..ottt e e et e e et e e e aae e e e eate e e e eataeeeetteeeeeateeeeesaseeesseeeeessseeeenssseeeasseaeeesseeeenaseeas 213
GLPIXELSTOREcceiutiiieiittieeeeteeeeette e e et e e e et e e eeateeeeeaaeeeeeateeeeeasseeeeataeeeeasseeeassseeeesssseeasseseeessseseenseseeensseseeensseeeensseens 216
GLPIXELTRANSFERociiiutiieiitieeeetteeeeeteeeeetaeeeeeteeeeeeaaeeeeeaaeeeeeateeseetaeeeeessseeeassseeeeassseeaasseeeeessseeeeassseeansseseeenseeeeensseens 221
GLPIXELZIOOM ..ot eeettee et e et e e e et e e e et e e e eate e e e etaeeeeeatee e e e taeeeessseeeassseeeensaeeeesseeeeessseeeenssseeensseaeeensneseensseeas 225
GLPOINTSIZEoviiiiitiee ettt e e et e e et e e e tte e e e eate e e e e taeeeetteeeeeatseeeeasaeeeesseeeeessseeeenssseeensseaeeesseeeensseeas 226
GLPOLYGONMODE.......cccoittiieiitiieeeeteee e et e e e et e e e et e e e e eaaee e e eaaeeeeeateeeeetaeeeeetseaeeasseeeeessaeeesseeeeassseseenssseeensseseeensaeeeansseeas 228
GLPOLYGONSTIPPLEcccutiieiiutieeeeteeeeeetteeeeetteeeeeateeeeeeaseeeeetaeeeeesseeseeetaeeeeessseeeesssaeeessseeasseseeessseeeesssseeansseseeensseeeensseeas 230
GLPUSHATTRIB.....ceiiutiieeeittieeeetee e e ettt e e ettt e e e et e e e eteeeeeeateeeeetaeeeeeasseseesaseeessseeeassseseesssseeasseeeeassseseenseseeenssesesensseeeensseens 231
GLPUSHMATRIX ...ceeuttteeetteeeeettteeeetteeeeetaee e ettt e e e eateeeeeeuseeeeeaseaeeeasseseeseseeeesssseeassseeeanssseeasseeeeessssseenssseeenssesesensseeeensseeas 235
GLPUSHNAMEoiiiitiie ettt e e et e e e et e e e ete e e e eetteeeeetteeeeeatseeeetaeeeessseeeasseeeeasseeeasseseeessseeeenssseeenssesesensseeeennsenas 237

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GLRASTERPOS ...ttt e e e e et e e et e e e et e e e e tte e e eeateeeeetaeeeetaeeeeeaseeeeenssseesesseaeeensaeseenasenas 238
GLREADBIUFFER.........cuiiiiittiie et et eeee e ettt e e e et e e e ettt e e e etaeeeeeate e e e e taeeeeeateaeeeateeeeeasaeeeeesseeeeessseseenssseeensseaesensaeeeennsenas 241
GLREADPIXELScoeiiutiieeettee e oottt ettt e et e e e ettt e e e et e e e eaaee e e tteeeeeaaeeeeeataeeeeaseeeeasseeeeessseeeesseeeeassseseenssseeenssesesensseeeensseens 242
GLRECT ...ttt e e e oot e e e et e e e ette e e e tte e e eeatee e e e taeeeeetteeeeeateeeeeaaaaeeetaeeeeentaeeeeteseeeatteaeeesaeeeennreeas 246
GLRENDERMODEoiiiiiuiiieiiitieeeettee et e e ettt e e e et e e e eaaee e e aaeeeeeaaee e e e taeeeeeassaeeessseeeesaaeesesseeeeasseeseenssseeensseseeensaeeeenaseens 247
GLROTATE .ottt ettt e e e ettt e e e et e e e etae e e e tteeeeeateeeeeataeeeeaeeeeeasseeeeeassseeesseseeessseeeenssseeensseeesesaeeeenasnens 249
GLSCALE ...ttt ettt e et e e ettt e e e et e e e ettee e e tteeeeeateeseeteeeeetteeeeaateeeeetaaeeeatteeeeeaaaeeeatteeeeaaeaeeetaeaeenateeas 251
GLSCISSOR ...ttt e ettt e et e e e et e e e ete e e e ettt e e e eateeeeetaeeeeeaaeeeeestseeeeataseeessseeeassseseeassseeasseeeeesssaseenssseeenssesesenseeeeenssneas 252
GLSELECTBUFFERcciiitiiiiiittieeeeteee ettt e e ettt e e et e e e tae e e e eate e e e etaeeeeeaseeeeeateeeeeasseeeeeaseeeeessseeeenssseeensseseeenseeeeansnens 253
GLSHADEMODELuutiiiiiiiee e ettt e et e e et e e e et e e e eaaee e e eaaeeeeeateeeeeataeeeeassaeeasseeeeesseeeaesseeeeessseseeassseeensseseeensseeeenaseens 255
GLSTENCILEFUNC ...ttt et e e e et e e e et e e e etaee e e tteeeeeateeeeeataeeeeaaeeeeeaseeeeeaseseeensseaeeenseeaeensseeas 257
GLSTENCILIMASK ...ttt e oottt e oottt e ettt e e e ettt e e e et e e e eaaee e eetaeeeeeaseeeeetaeeeesseeeeassseeeesseeeaasseseeasssaeeenssseeensseseeensseeeensseens 259
GLSTENCILOPooiiiiitiie oottt ettt e e et e e e et e e e eate e e e eeateeeeeaaeeeeeatseeeesaeeeessseeeasssaeeassseeasseeeeessseseenssseeeassesesenseeeeensseeas 260
GLTEXCOORDoeiiitiieeeeitee et e et e e et e e e ettt e e e et e e e eaaee e eeateeeeeaseeeeetaeeeessseeeessseeeesseeeesseeeeassseeeenseseeenssssesensseseenssenas 262
GLTEXENV ..ottt e e e et e e e et e e e et ee e e tteeeeeateeeeeataeeeeetaeeeeeasaeeeenssseeensseseeesaeeeenaseeas 264
GLTEXGEN ...ttt et e et e e ettt e e e et e e e e taeeeeetaeeeeeateeeeetaeeeeseeeeeesteeeeaasseeeesseeeeassseseensssesensseseeensseseensseens 267
GLTEXIMAGELID ...t et e et e e e e e et e e e et e e e eetta e e e eaaeeeeeaaeeeeeataeeeeeaseseeesaeeeeaseeas 270
GLTEXIMAGEZD ...t e e et e e e e et e e eeaae e e eetaaeeeetaeeeeaaeeeeeasaeeeeeaseeeeesseeeennseeas 274
GLTEXPARAMETERccoiittiiiiitieeeeteee et e e e ettt e e e et e e e eette e e eetaeeeeeateee e e taeeeeeaseeeeesseeeeesaaeeeesseeeeessseseenssseeansseseeensaeeeensseeas 278
GLTRANSLATE ...utiieiitiee e ettt e oottt e e e ettt e e etae e e e et e e e eateeeeeaaeeeeeateeeeeasseeeeaseseeessseeeassseeeessseeeesseeeeessseseenssseeensseseeensaeeeensseeas 283
GLVERTEX ... ittieeeeettee e ettt e e e ettt e e e et eeeae e e eetae e e e eateeeeetaee e e tteeeeeasseeeeataseeessseeeassseeeeasseeeasseeeeassseeeenssseeeasseseeenseeeeenssneas 284
GLVIEWPORToutiieieitiee e eettee e ettt e e et e e et e e e ettt e e e eateeeeetaeeeeeateeeeeatseeeeataseeeseseeeasseeseanssseeesseseeesssseeenssseeenssesesesseeeenssenas 286
CHAPTER 6 GLU REFERENCE PAGES 288
GLUBEGINCURVEuttiiiiiiiieiiiieeeeiieeeetteeesiateeseststeeeaesaeestsaaeaasssseaasssseesssssaeassseesasssaesssssaeeasssseesasssaessssseaeasssseeenssssens 288
GLUBEGINPOLYGONcciiiiiiiiiiiieeiiiieeeite e ettt e esiteeeeebaeestbeeeasssseeaasssaaessssaaeasssseesasssseesssseesassssesssssssesssssesenssssesnnssses 289
GLUBEGINSURFACEccceitttteiitieeeittteeeitteeesitteeastseeaassaeesssesaaasssesaasssssssssasasssssessssssessssssssassssesssssssssssssssssssssseesssssens 290
GLUBEGINTRIM ...oeiiiuiiiiiiiiiieiitieeeeit e e etteeestvteeesateeeesaesaeessssaaeasssseaasssssaessssaaeasssaesasssseesssssesassssessassssesassseessssseeennssees 291
GLUBUILD IDIMIPMAPSooiiiitiieeititeeeitteeesitteeestteeesssaeessseaeaasssseaassssaesssssasasssseeassssassssssssasssssessssssssssssessasssesessssses 293
GLUBUILD2IDIMIPMAPSoeiiiitieeeititeeeitteeeestteeasstseeasssseessseeeasssseesasssssessssssassssessssssssssssssssassssssssssssssssssessessssssessssses 294
GLUGCYLINDERoteiititteeitteeiitteeasetseeeaesseeasssseeaasssssaasssessssssseasssssssssssssssssssssasssssssssssssssssssssassssssssssssssssssssssnsssesesssssens 295
GLUDELETENURBSRENDERERuuttiiiitttteiititteeitteeeseseeesseseeeasssseeesssseessssesasssssessssssessssssssassssssssssssesssssssssssssessssssees 297
GLUDELETEQUADRICuvtieiiitieeeitteeeeeteeeeststeeaasssesasssaeesssssesasssssssasssssssssssssasssssssssssssssssssssassssessssssssssssssssssssssesssssses 297
GLUDELETETESS ..eeeuttttietttte ittt eettteeettteeestvteeasstseeeesssaeessssaeeassssseaassssaeassssesaassseesasssaeesssssesasssssessssssessssseseesssseensssses 298
GLUDISK ...ttt ettt ettt ettt ettt e ettt e e ettt e e e tateeastaeeeeaesaeessssaaeasssseeaasssaaeasssaeaassssaeansssaeesssseaeanssseeeasssaaessssseeennsseeennsssens 299
GLUERRORSTRINGttiiiitiieiiiieeesttteeetteeeeststeeasssseeessssaeessseseasssseeassssssesssssesassssssssssssessssssssassssssssssssessssssesesssssesnssssees 300
GLUGETNURBSPROPERTYccuttiiieitiiteeitteteistteeessseeeseesseesssseeeassssssassssssesssssssassssessssssssssssssssassssssssssssssssssesssssssessssssses 301
GLULOADSAMPLINGMATRICES........uttttiiititteisirteeestsesesesseeesssseseassseseassssesssssssassssessssssssssssssssassssesssssssssssssssssssssessssssees 301
GLULOOKAT ...ttt eeettte ettt et e ettt e e ettt e e etveeeaastaeeesaesaee s sbaaeassseeeasssaaeassseeaasssseeaasssaeesssseeeasssseeeassssaesnssseeensssaeennsseens 303
GLUNEWNURBSRENDERERL.........cccciittttiiitttteiirteeaisteeesesseeesssseeeassseeassssssesssssesassssssssssssssssssssassssessssssssssssssessssssessssssses 304
GLUNEWQUADRICuvtiiitvtieeitteeestteeeeeteeeasesseaaassseeaassaessssseeassssssssssssssssssesassssssssssssessssssssassssesssssssessssssesssssssssssssses 304
GLUNEWTTESS ...ttt ettt ettt ettt e e ettt e e ettt eeeestaeeesaesaee e tbaaeaassseeeasssaeeasssaaaasssseeaasssaeesssseaeasssseeaasssaeesnsssaeenssseeeasseens 305
GLUNEXTCONTOUReieetvtieeitteeastteeeeseseeessesteesasssesessssesssssseeasssassssesssssssessssssessssssssssssssees 305
GLUNURBSCALLBACKutvtteiittieeeittteeeittteeasesteeaassseseassseesssssseasssssssssssssssssssesasssssssssssssssssssssasssssssssssssssssssssessssssssssssees 307
GLUNURBSCURVEttiiiiiitieeitteeestiteeeetteeesesteaaasssseaassaeessseseasssssssssssssssssssssassssssssssssessssssssassssssssssssessssssessssssssesssssens 308
GLUNURBSPROPERTYuuttiiiiitieeeiiiieeeitteeeesitteeasteeeeessaeessseeeasssseesassssessssssasassssessssssssssssssssassssessssssssssssssssssssssessnssses 310
GLUNURBSSURFACEcceitttieiittteeeitieeeeitteeesisteeasssseeaasssessssseeeassssseassssssssssssssssssssessssssessssssssassssessssssssssssssesssssssessssssens 311
GLUORTHOZDeeeiitiie ettt et e ettt e e ettt e e ettt e e e eatbaeesatbeaeasssseeaassaaeeasssaaeassssaeaasssaeessssaeeasssseeeasssaesassseesnsssasennsssens 314
GLUPARTIALDISKutiiiiiiiiieiiiieeeeit e eetiteeesitteeesatteeeeaebaeesstbaeeasssseaaasssaaeassssaeasssaeaasssaesassseasassssesansssaeessssasesssseeennsseens 314
GLUPERSPECTIVE ...ccuutttiieitttteeitteeeeetteeeettteesststeaaassseeaasssseessssaeeasssseeaassssessssssesassssessassssessssssesassssesssssssesssssssessssseeessssses 316
GLUPICKIMATRIXuttitieeiitteetteeeeitteeeetteeeeststaeasssseeeasssaeesssseaeasssssesasssseesssssseassssesasssaeesssseesassssesssssssessnssesessssseensssens 317
GLUPROJIECT ...itteeeetiie ettt ettt e ettt e e ettt e e ettt e e eesteeeeeatbaeesatbaaeassseeeassaaeeassseaaasssseeaasssaeesssseaeanssseeeasssaaeessseeesanssaeennssaens 318
GLUPWLCURVE.....cciitttiiieiiite ettt e et ee e ettt e e sstvteeaestaeeeeassaeessssaeeasssseaaasssaeessssseeasssseesasssaessssseeeasssseeaasssseesnssseeesssseeennsseens 319
GLGLUQUADRICCALLBACK00eieitttteeitteeeessteesasseeassesseeassseeeasssssssssssssssssssssasssssssssssssssssssssassssssssssssssssssssssssssssssssssens 321
GLUQUADRICDRAWSTYLE.......uuttiiitiiteeitteeistteeesteeeeseesseesssseeeassseeasssssesssssesassssessssssssssssssssassssesssssssssssssessessssessssssses 322
GLUQUADRICINORMALSeeeiitieeeietreeeaereeeasisseaaassseeeassssessssssaeassssssssssssssssssssasssssssssssssssssssssassssssssssssssssssssssssssssssssssees 323
GLUQUADRICORIENTATIONuttiiiuttieeeutteeeserteeasssesesssseesssseeeasssssssassssessssssesssssssssssssssssssssssasssssssssssssssssssssassssssssssssees 324
GLUQUADRICTEXTUREuvtteiitteeeitieeeeitteeeesisteeassssesasssseessseesasssssssasssssessssssasssssssssssssssssssssasssssssssssssssssssssessssesssssssees 325
GLUSCALEIMAGEuttiiiiiitieeiiee et ee e ette e ettt e e eesta e e esaesaeesstbaaeaassseeaasssaeessssaeeasssseeeasssaeesssseeeasssseesasssaesansseeeasssseeessseens 325
GLUSPHERE.uutttiittteeeitteeestteeastseeeasseeeasssseaaassseeaassssesssssaeassssesaassssessssssesassssessasssssesssssssasssssessssssesssssssesssseeesssssens 327

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GLUTESSCALLBACKccettteeeitteeeeeteee e ettt e e e et e e e eteeeeeeaaeeeaetaeeeeeatseseetaeeeeesseeeeasteeeeanssseeaesseseeessseseenssseeansseaeeensseeeensseeas 328
GLUTESSVERTEXutitiiiittieeeetteeeetteeeeetee e ettt e e eeateeeeeeaaeeeeetaeaeeeasseeeetaeeeeessseeeasseaeeansaseeeesseseeessseseenssseeensssseeensaeeeeesseens 330
GLUUNPROJECT ...ttt ettt ettt e e et e e e et e e e ate e e e eaae e e e eataeeeetteeeeeaseeeeeasaaeeetseeeeesssaeeensaseeensseaeeenseeeeennsenas 331
CHAPTER 7 GLX REFERENCE PAGES 333
GLX CHOOSEVISUALtiietttieiitieeeettteeeeteeeeststeeasssseeaassseesssaeeasssssesassssesssssesassssssssssssessssssssassssessssssssssnsssesesssssesassssens 333
GLX COPY CONTEXT ...ttteeetvteeesitteeesstseeeaeseeeesssseeassssseaasssesssssseeassssessssssssssssssasssssessssssessssssssassssesssssssesssssssssssssseesssssees 337
GLX CREATECONTEXT ..eutttteiitteeesetteeeassseeeassseeassssesesssseesssssesasssssesasssssssssssssasssssssssssssssssssssassssssssssssssssssessesssssessssssees 338
GLXCREATEGLXPIXMAPccuitiiiiiiiie ettt e ettt e eetteeeetteeestbteeasatseeessssaeessssaaeassssaeeasssaeesssseaeasssseesasssaessnsseeeasssseesassseens 340
GLX D ESTROY CONTEXTuvtteiiutieeeeutreeeasseeeesesseeasssseeesssssesssssseeassssssssssssesssssssssssssssssssssssssssssasssssssssssssssssssssassssessssssees 342
GLXDESTROYGLXPIXIMAP........oiiiiiiiiieiiieeiiiteeeetteeeeeteeessitteeasstseeessesaeesssaaeaassseeeasssseesssssasassssessasssaesssssesessssseeensssees 343
GLXGETCONFIG ..eeeeiuviiieeereeeistteeaetreeeatseeessesteaasssseeaaesseesssssaeassssseassssessssssesassssssssssssessssssssassssesssssssessssssssssssseeesssssens 343
GLXGETCURRENTCONTEXTvtteeiuttteeettteeesiseeeassssesesssseesssseeeasssssssssssssssssssssassssesssssssessssssssassssesssssssssssssssssssssessssssses 347
GLXGETCURRENTDRAWABLEccutttiiitttteiitteeeetteeeetteeestseeeaassseeeasssseesssssaeasssseesassssesssssesassssessssssesssssesessssseesssssees 347
GLXINTRO ...vviiiiiiieeeiite ettt ettt e ettt e e ettt e e etvteeeestaeeeaaesaee s ebaeeassseeeasssaeeasssaaeassssaeaasssaeessssaaeanssseeeasssaaeenssseeennsseeennsseens 348
GLXISIDIRECTutiieiiiiiieeeieee ettt e et eeeetbteeestateeaestseeeeaesaeessssaaeassseaaasssaeeasssaaaasssseeaasssaeesnsseaeanssseesasssaeesnsssaesnssseeensseens 350
GLXIMAKECURRENTcceitttieiittteeaetteeeaeseeeaseseeeasssseeeassseesssssseasssssssasssssssssssssasssssessssssessssssssasssssssssssssssssssesssssssessssssens 350
GLXQUERYEXTENSION.......0tiiiiiitieiiiieeeitteeestteeesteteeseseeesssseeeasssseeaasssseesssssasasssseesasssseesssssasassssessssssseesssseesassssseessssses 352
GLXQUERY VERSION.cceuttieiiitteeeitteeeaseseeeaseseeesassseeaassseesassseeassssssssssssassssssesassssssssssssessssssssassssesssssssessssssessssssssssssssens 353
GLX SWAPBUFFERSceeeitttieiitieeeititeeeittteeeststeeasstseeeeesaeessseaeasssseeaassssaessssseeasssseesasssaessssssesassseesassssessssssesessseesanssees 354
(€13, QU] 20, € 31 0) 1 LU PRP 355
GLXWAITGL ...ttt e ettt e e ettt e e etbe e e e tbeeeaeatseeeassaaaeessbaaeeassseeeasssaeesssseeeassseeeasssaeeessssaeenssseeessssens 357
GLX W AITX ..ot etteeeetite e ettt e et e e e e ettt eeeeataeeeestateeaassseeeaassaeessssaaeasssseeaasssaeeasssaeeasssseeaasssaeessssaaeansssseeassssaesnssseeanssseeensseens 358

OpenGL Reference Manual (Addison-Wesley Publishing Company)

OpenGL Reference Manual

The Official Reference Document for OpenGL, Release 1

OpenGL Architecture Review Board

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York Don Mills, Ontario Wokingham,
England Amsterdam Bonn Sydney Singapore Tokyo Madrid San Juan Paris Seoul Milan Mexico
City Taipei

Silicon Graphics is a registered trademark and OpenGL and Graphics Library are trademarks of
Silicon Graphics, Inc. X Window System is a trademark of Massachusetts Institute of Technology.

The authors and publishers have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

Copyright © 1994 by Silicon Graphics, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

Sponsoring Editor: David Rogelberg

Project Editor: Joanne Clapp Fullagar

Cover Image: Thad Beier

Cover Design: Jean Seal

Text Design: Electric Ink, Ltd., and Kay Maitz

Set in 10-point Stone Serif

ISBN 0-201-63276-4

First Printing, November 1992

123456789-AL-9695949392

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Preface

OpenGL &tm; (GL for Graphics Library &tm;) is a software interface to graphics hardware. This
interface consists of several hundred functions that allow you, a graphics programmer, to specify the
objects and operations needed to produce high-quality color images of three-dimensional objects.
Many of these functions are actually simple variations of each other, so in reality there are only 120
substantially different functions.

As complements to the core set of OpenGL functions, the OpenGL Ultility Library (GLU) and the
OpenGL Extension to the X Window System &tm; (GLX) provide useful supporting features. This
manual explains what all these functions do; it has the following chapters:

" Chapter 1, "Introduction to OpenGL," provides a brief statement of the major underlying
concepts embodied in OpenGL. It uses a high-level block diagram to discuss in conceptual
terms all the major stages of processing performed by OpenGL.

Chapter 2, "Overview of Commands and Routines," describes in more detail how input data
(in the form of vertices specifying a geometric object or pixels defining an image) is
processed and how you can control this processing using the functions that comprise
OpenGL. Functions belonging to GLU and GLX are also discussed.

Chapter 3, "Summary of Commands and Routines," lists the OpenGL commands in groups
according to what sort of tasks they perform. Full prototypes are given so that you can use
this section as a quick reference once you understand what the commands accomplish.

Chapter 4, "Defined Constants and Associated Commands," lists the constants defined in
OpenGL and the commands that use them.

Chapter 5, "OpenGL Reference Pages," which forms the bulk of this manual, contains
descriptions of each set of related OpenGL commands. (Commands with parameters that
differ only in data type are described together, for example.) Each reference page fully
describes the relevant parameters, the effect of the commands, and what errors might be
generated by using the commands.

Chapter 6, "GLU Reference Pages," contains the reference pages for all the GLU routines.

Chapter 7, "GLX Reference Pages,"contains the reference pages for the GLX routines.

What You Should Know Before Reading This Manual

This manual is designed to be used as the companion reference volume to the OpenGL
Programming Guide by Jackie Neider, Tom Davis, and Mason Woo (Reading, MA: Addison-
Wesley Publishing Company). The focus of this Reference Manual is how OpenGL works, while
the Programming Guide's focus is how to use OpenGL. For a complete understanding of OpenGL,
you need both types of information. Another difference between these two books is that most of the

6

OpenGL Reference Manual (Addison-Wesley Publishing Company)

content of this Reference Manual is organized alphabetically, based on the assumption that you
know what you don't know and therefore need only to look up a description of a particular
command; the Programming Guide is organized like a tutorial - it explains the simpler OpenGL
concepts first and builds up to the more complex ones. Although the command descriptions in this
manual don't necessarily require you to have read the Programming Guide, your understanding of
the intended usage of the commands will be much more complete if you have read it. Both books
also assume that you know how to program in C.

If you don't have much of a computer graphics background, you should certainly start with the
Programming Guide rather than this Reference Manual. Basic graphics concepts are not explained
in this manual. You might also want to look at Computer Graphics: Principles and Practice by
James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes (Reading, MA: Addison-
Wesley Publishing Company). That book is an encyclopedic treatment of the field of computer
graphics. Another, gentler introduction to the subject can be found in 3D Computer Graphics: A
User's Guide for Artists and Designers by Andrew S. Glassner (New York: Design Press).

Acknowledgments

This manual owes its existence to many people. Kurt Akeley of Silicon Graphics®, Sally Browning
of SABL Productions, and Kevin P. Smith also of Silicon Graphics wrote most of the material, with
contributions from Jackie Neider and Mark Segal (both from Silicon Graphics). The OpenGL
Graphics System: A Specification (coauthored by Mark and Kurt), The OpenGL Graphics System
Utility Library (written by Kevin), and OpenGL Graphics with the X Window System (written by
Phil Karlton) served as source documents for the authors. Phil Karlton and Kipp Hickman assisted
by helping to define and create OpenGL at Silicon Graphics, with help from Raymond Drewry of
Gain Technology, Inc., Fred Fisher of Digital Equipment Corp., and Randi Rost of Kubota Pacific
Computer, Inc. The members of the OpenGL Architecture Review Board - Murray Cantor and Linas
Vepstas from International Business Machines, Paula Womack and Jeff Lane of Digital Equipment
Corporation, Murali Sundaresan of Intel, and Chuck Whitmer of Microsoft - also contributed. Thad
Beier together with Seth Katz and the Inventor team at Silicon Graphics created the cover image.
Kay Maitz of Silicon Graphics, Arthur Evans of Evans Technical Communications, and Susan Blau
provided production assistance; Tanya Kucak copyedited the manual. Finally, this book wouldn't
exist unless OpenGL did, for which all the members of the OpenGL team at Silicon Graphics, Inc.,
need to be thanked for their efforts: Momi Akeley, Allen Akin, Chris Frazier, Bill Glazier, Paul Ho,
Simon Hui, Lesley Kalmin, Pierre Tardif, Jim Winget, and especially Wei Yen, in addition to the
previously mentioned Kurt, Phil, Mark, Kipp, and Kevin. Many other Silicon Graphics employees,
who are too numerous to mention, helped refine the definition and functionality of OpenGL.

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Chapter 1
Introduction to OpenGL

As a software interface for graphics hardware, OpenGL's main purpose is to render two- and three-
dimensional objects into a frame buffer. These objects are described as sequences of vertices (which
define geometric objects) or pixels (which define images). OpenGL performs several processing
steps on this data to convert it to pixels to form the final desired image in the frame buffer.

This chapter presents a global view of how OpenGL works; it contains the following major sections:

"OpenGL Fundamentals" briefly explains basic OpenGL concepts, such as what a graphic
primitive is and how OpenGL implements a client-server execution model.

"Basic OpenGL Operation" gives a high-level description of how OpenGL processes data
and produces a corresponding image in the frame buffer.

OpenGL Fundamentals

This section explains some of the concepts inherent in OpenGL.

Primitives and Commands

OpenGL draws primitives - points, line segments, or polygons - subject to several selectable modes.
You can control modes independently of each other; that is, setting one mode doesn't affect whether
other modes are set (although many modes may interact to determine what eventually ends up in the
frame buffer). Primitives are specified, modes are set, and other OpenGL operations are described
by issuing commands in the form of function calls.

Primitives are defined by a group of one or more vertices. A vertex defines a point, an endpoint of a
line, or a corner of a polygon where two edges meet. Data (consisting of vertex coordinates, colors,
normals, texture coordinates, and edge flags) is associated with a vertex, and each vertex and its
associated data are processed independently, in order, and in the same way. The only exception to
this rule is if the group of vertices must be c/ipped so that a particular primitive fits within a
specified region; in this case, vertex data may be modified and new vertices created. The type of
clipping depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, although there may be an
indeterminate delay before a command takes effect. This means that each primitive is drawn
completely before any subsequent command takes effect. It also means that state-querying
commands return data that's consistent with complete execution of all previously issued OpenGL
commands.

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Procedural versus Descriptive

OpenGL provides you with fairly direct control over the fundamental operations of two- and three-
dimensional graphics. This includes specification of such parameters as transformation matrices,
lighting equation coefficients, antialiasing methods, and pixel update operators. However, it doesn't
provide you with a means for describing or modeling complex geometric objects. Thus, the OpenGL
commands you issue specify how a certain result should be produced (what procedure should be
followed) rather than what exactly that result should look like. That is, OpenGL is fundamentally
procedural rather than descriptive. Because of this procedural nature, it helps to know how OpenGL
works - the order in which it carries out its operations, for example - in order to fully understand
how to use it.

Execution Model

The model for interpretation of OpenGL commands is client-server. An application (the client)
issues commands, which are interpreted and processed by OpenGL (the server). The server may or
may not operate on the same computer as the client. In this sense, OpenGL is network-transparent.
A server can maintain several GL contexts, each of which is an encapsulated GL state. A client can
connect to any one of these contexts. The required network protocol can be implemented by
augmenting an already existing protocol (such as that of the X Window System) or by using an
independent protocol. No OpenGL commands are provided for obtaining user input.

The effects of OpenGL commands on the frame buffer are ultimately controlled by the window
system that allocates frame buffer resources. The window system determines which portions of the
frame buffer OpenGL may access at any given time and communicates to OpenGL how those
portions are structured. Therefore, there are no OpenGL commands to configure the frame buffer or
initialize OpenGL. Frame buffer configuration is done outside of OpenGL in conjunction with the
window system; OpenGL initialization takes place when the window system allocates a window for
OpenGL rendering. (GLX, the X extension of the OpenGL interface, provides these capabilities, as
described in "OpenGL Extension to the X Window System.")

Basic OpenGL Operation

The figure shown below gives an abstract, high-level block diagram of how OpenGL processes data.
In the diagram, commands enter from the left and proceed through what can be thought of as a
processing pipeline. Some commands specify geometric objects to be drawn, and others control how
the objects are handled during the various processing stages.

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Cisptay
List
l Perveres Far-
carrrand p| Eluztor [gf DRSNSl packizaton (g FRgTent gl Frme muter
I hssemoly [OperElons
Tl
hﬂ'l'l:‘f}'
L Fiael T
Lol mlons
o= -

Figure 1-1 : OpenGL Block Diagram

As shown by the first block in the diagram, rather than having all commands proceed immediately
through the pipeline, you can choose to accumulate some of them in a display list for processing at a
later time.

The evaluator stage of processing provides an efficient means for approximating curve and surface
geometry by evaluating polynomial commands of input values. During the next stage, per-vertex
operations and primitive assembly, OpenGL processes geometric primitives - points, line segments,
and polygons, all of which are described by vertices. Vertices are transformed and lit, and primitives
are clipped to the viewport in preparation for the next stage.

Rasterization produces a series of frame buffer addresses and associated values using a two-
dimensional description of a point, line segment, or polygon. Each fragment so produced is fed into
the last stage, per-fragment operations, which performs the final operations on the data before it's
stored as pixels in the frame buffer. These operations include conditional updates to the frame
buffer based on incoming and previously stored z-values (for z-buffering) and blending of incoming
pixel colors with stored colors, as well as masking and other logical operations on pixel values.

Input data can be in the form of pixels rather than vertices. Such data, which might describe an
image for use in texture mapping, skips the first stage of processing described above and instead is
processed as pixels, in the pixel operations stage. The result of this stage is either stored as texture
memory, for use in the rasterization stage, or rasterized and the resulting fragments merged into the
frame buffer just as if they were generated from geometric data.

All elements of OpenGL state, including the contents of the texture memory and even of the frame
buffer, can be obtained by an OpenGL application.

10

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Chapter 2
Overview of Commands and Routines

Many OpenGL commands pertain specifically to drawing objects such as points, lines, polygons,
and bitmaps. Other commands control the way that some of this drawing occurs (such as those that
enable antialiasing or texturing). Still other commands are specifically concerned with frame buffer
manipulation. This chapter briefly describes how all the OpenGL commands work together to create
the OpenGL processing pipeline. Brief overviews are also given of the routines comprising the
OpenGL Utility Library (GLU) and the OpenGL extensions to the X Window System (GLX).

This chapter has the following main sections:

,

"OpenGL Processing Pipeline" expands on the discussion in Chapter 1 by explaining how
specific OpenGL commands control the processing of data.

"Additional OpenGL Commands" discusses several sets of OpenGL commands not covered
in the previous section.

"OpenGL Utility Library" describes the GLU routines that are available.

"OpenGL Extension to the X Window System" describes the GLX routines.

OpenGL Processing Pipeline

Now that you have a general idea of how OpenGL works from Chapter 1, let's take a closer look at
the stages in which data is actually processed and tie these stages to OpenGL commands. The figure
shown on the next page is a more detailed block diagram of the OpenGL processing pipeline.

For most of the pipeline, you can see three vertical arrows between the major stages. These arrows
represent vertices and the two primary types of data that can be associated with vertices: color
values and texture coordinates. Also note that vertices are assembled into primitives, then to
fragments, and finally to pixels in the frame buffer. This progression is discussed in more detail in
the following sections.

As you continue reading, be aware that we've taken some liberties with command names. Many
OpenGL commands are simple variations of each other, differing mostly in the data type of
arguments; some commands differ in the number of related arguments and whether those arguments
can be specified as a vector or whether they must be specified separately in a list. For example, if
you use the glVertex2f() command, you need to supply x and y coordinates as 32-bit floating-point
numbers; with glVertex3sv(), you must supply an array of three short (16-bit) integer values for x,
¥, and z. For simplicity, only the base name of the command is used in the discussion that follows,
and an asterisk is included to indicate that there may be more to the actual command name than is
being shown. For example, glVertex*() stands for all variations of the command you use to specify
vertices.

11

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Also keep in mind that the effect of an OpenGL command may vary depending on whether certain
modes are enabled. For example, you need to enable lighting if the lighting-related commands are to
have the desired effect of producing a properly lit object. To enable a particular mode, you use the
glEnable() command and supply the appropriate constant to identify the mode (for example,

GL LIGHTING). The following sections don't discuss specific modes, but you can refer to the
reference page for glEnable() for a complete list of the modes that can be enabled. Modes are

disabled with glDisable().

WERTK:EZ

FRIMITIVES

FRAGMENT=

FLELZE

1

War e Calor
Faa sty Pos Maormal h;ﬂ TasCaord
Currank Pumant ?"":"t
I | e
s Bakr Coordrakes
¥ ¥
o el e
It Kz
%
v v
Y ¥ Y
Lighiing &
* Ly Coloring Tenzer
Tesbr=
et iz
Primiiwe Szsamblp
Applicafor Specific Clpping
Frojeziion
ik
DirawhFized= Foed Fied
* ¥ : Teschn ai + =
wiew Wolime Clipping [
Sorage
* bbcridas
Divide bpw;
Wiewpeart
Pzl
Tran<sker
: J hodas
Curran b 1—1- j.
Facier e Faceriraion
Padon
¥

Par- Fagren tOper bors

Frame= Bufier

Texire
tzmory

Figure 2-1 : OpenGL Pipeline

12

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Vertices

This section relates the OpenGL commands that perform per-vertex operations to the processing
stages shown in the figure on the previous page.

Input Data

You must provide several types of input data to the OpenGL pipeline:
" Vertices - Vertices describe the shape of the desired geometric object. To specify vertices,
you use glVertex*() commands in conjunction with glBegin() and glEnd() to create a point,
line, or polygon. You can also use glRect*() to describe an entire rectangle at once.

Edge flag - By default, all edges of polygons are boundary edges. Use the glEdgeFlag*()
command to explicitly set the edge flag.

Current raster position - Specified with glRasterPos*(), the current raster position is used to
determine raster coordinates for pixel and bitmap drawing operations.

Current normal - A normal vector associated with a particular vertex determines how a
surface at that vertex is oriented in three-dimensional space; this in turn affects how much
light that particular vertex receives. Use gINormal*() to specify a normal vector.

Current color - The color of a vertex, together with the lighting conditions, determine the
final, lit color. Color is specified with glColor*() if in RGBA mode or with glindex*() if in
color index mode.

Current texture coordinates - Specified with glTexCoord*(), texture coordinates determine
the location in a texture map that should be associated with a vertex of an object.

When glVertex*() is called, the resulting vertex inherits the current edge flag, normal, color, and
texture coordinates. Therefore, glEdgeFlag*(), giNormal*(), glColor*(), and glTexCoord*() must
be called before glVertex*() if they are to affect the resulting vertex.

Matrix Transformations

Vertices and normals are transformed by the modelview and projection matrices before they're used
to produce an image in the frame buffer. You can use commands such as glMatrixMode(),
glMultMatrix(), glRotate(), glTranslate(), and glScale() to compose the desired transformations,
or you can directly specify matrices with glLoadMatrix() and gll.oadldentity(). Use
glPushMatrix() and glPopMatrix() to save and restore modelview and projection matrices on their
respective stacks.

Lighting and Coloring

In addition to specifying colors and normal vectors, you may define the desired lighting conditions

13

OpenGL Reference Manual (Addison-Wesley Publishing Company)

with glLight*() and glLightModel*(), and the desired material properties with glMaterial*().
Related commands you might use to control how lighting calculations are performed include
glShadeModel(), glFrontFace(), and glColorMaterial().

Generating Texture Coordinates

Rather than explicitly supplying texture coordinates, you can have OpenGL generate them as a
function of other vertex data. This is what the glTexGen*() command does. After the texture
coordinates have been specified or generated, they are transformed by the texture matrix. This
matrix is controlled with the same commands mentioned earlier for matrix transformations.

Primitive Assembly

Once all these calculations have been performed, vertices are assembled into primitives - points,
line segments, or polygons - together with the relevant edge flag, color, and texture information for
each vertex.

Primitives

During the next stage of processing, primitives are converted to pixel fragments in several steps:
primitives are clipped appropriately, whatever corresponding adjustments are necessary are made to
the color and texture data, and the relevant coordinates are transformed to window coordinates.
Finally, rasterization converts the clipped primitives to pixel fragments.

Clipping

Points, line segments, and polygons are handled slightly differently during clipping. Points are
either retained in their original state (if they're inside the clip volume) or discarded (if they're
outside). If portions of line segments or polygons are outside the clip volume, new vertices are
generated at the clip points. For polygons, an entire edge may need to be constructed between such
new vertices. For both line segments and polygons that are clipped, the edge flag, color, and texture
information is assigned to all new vertices.

Clipping actually happens in two steps:

1. Application-specific clipping - Immediately after primitives are assembled, they're clipped in
eye coordinates as necessary for any arbitrary clipping planes you've defined for your
application with glClipPlane(). (OpenGL requires support for at least six such application-
specific clipping planes.)

2. View volume clipping - Next, primitives are transformed by the projection matrix (into clip
coordinates) and clipped by the corresponding viewing volume. This matrix can be
controlled by the previously mentioned matrix transformation commands but is most
typically specified by glFrustum() or glOrtho().

14

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Transforming to Window Coordinates

Before clip coordinates can be converted to window coordinates, they are normalized by dividing by
the value of w to yield normalized device coordinates. After that, the viewport transformation
applied to these normalized coordinates produces window coordinates. You control the viewport,
which determines the area of the on-screen window that displays an image, with glDepthRange()
and glViewport().

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional image. Each
point of this image contains such information as color, depth, and texture data. Together, a point and
its associated information are called a fragment. The current raster position (as specified with
glRasterPos*()) is used in various ways during this stage for pixel drawing and bitmaps. As
discussed below, different issues arise when rasterizing the three different types of primitives; in
addition, pixel rectangles and bitmaps need to be rasterized.

Primitives. You control how primitives are rasterized with commands that allow you to choose
dimensions and stipple patterns: glPointSize(), glLineWidth(), glLineStipple(), and
glPolygonStipple(). Additionally, you can control how the front and back faces of polygons are
rasterized with glCullFace(), glFrontFace(), and glPolygonMode().

Pixels. Several commands control pixel storage and transfer modes. The command glPixelStore*()
controls the encoding of pixels in client memory, and glPixelTransfer*() and glPixelMap*()
control how pixels are processed before being placed in the frame buffer. A pixel rectangle is
specified with glDrawPixels(); its rasterization is controlled with glPixelZoom().

Bitmaps. Bitmaps are rectangles of zeros and ones specifying a particular pattern of fragments to be
produced. Each of these fragments has the same associated data. A bitmap is specified using
glBitmap().

Texture Memory. Texturing maps a portion of a specified texture image onto each primitive when
texturing is enabled. This mapping is accomplished by using the color of the texture image at the
location indicated by a fragment's texture coordinates to modify the fragment's RGBA color. A
texture image is specified using glTexImage2D() or glTexImagelD(). The commands
glTexParameter*() and glTexEnv*() control how texture values are interpreted and applied to a
fragment.

Fog. You can have OpenGL blend a fog color with a rasterized fragment's post-texturing color using
a blending factor that depends on the distance between the eyepoint and the fragment. Use glFog*()
to specify the fog color and blending factor.

Fragments

OpenGL allows a fragment produced by rasterization to modify the corresponding pixel in the frame

buffer only if it passes a series of tests. If it does pass, the fragment's data can be used directly to
replace the existing frame buffer values, or it can be combined with existing data in the frame

15

OpenGL Reference Manual (Addison-Wesley Publishing Company)

buffer, depending on the state of certain modes.

Pixel Ownership Test

The first test is to determine whether the pixel in the frame buffer corresponding to a particular
fragment is owned by the current OpenGL context. If so, the fragment proceeds to the next test. If
not, the window system determines whether the fragment is discarded or whether any further
fragment operations will be performed with that fragment. This test allows the window system to
control OpenGL's behavior when, for example, an OpenGL window is obscured.

Scissor Test

With the glScissor() command, you can specify an arbitrary screen-aligned rectangle outside of
which fragments will be discarded.

Alpha Test

The alpha test (which is performed only in RGBA mode) discards a fragment depending on the
outcome of a comparison between the fragment's alpha value and a constant reference value. The
comparison command and reference value are specified with glAlphaFunc().

Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a comparison between
the value in the stencil buffer and a reference value. The command glStencilFunc() specifies the
comparison command and the reference value. Whether the fragment passes or fails the stencil test,
the value in the stencil buffer is modified according to the instructions specified with glStencilOp().

Depth Buffer Test

The depth buffer test discards a fragment if a depth comparison fails; giDepthFunc() specifies the
comparison command. The result of the depth comparison also affects the stencil buffer update
value if stenciling is enabled.

Blending

Blending combines a fragment's R, G, B, and A values with those stored in the frame buffer at the
corresponding location. The blending, which is performed only in RGBA mode, depends on the
alpha value of the fragment and that of the corresponding currently stored pixel; it might also
depend on the RGB values. You control blending with giBlendFunc(), which allows you to indicate
the source and destination blending factors.

16

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Dithering

If dithering is enabled, a dithering algorithm is applied to the fragment's color or color index value.
This algorithm depends only on the fragment's value and its x and y window coordinates.

Logical Operations

Finally, a logical operation can be applied between the fragment and the value stored at the
corresponding location in the frame buffer; the result replaces the current frame buffer value. You
choose the desired logical operation with glLogicOp(). Logical operations are performed only on
color indices, never on RGBA values.

Pixels

During the previous stage of the OpenGL pipeline, fragments are converted to pixels in the frame
buffer. The frame buffer is actually organized into a set of logical buffers - the color, depth, stencil,
and accumulation buffers. The color buffer itself consists of a front left, front right, back left, back
right, and some number of auxiliary buffers. You can issue commands to control these buffers, and
you can directly read or copy pixels from them. (Note that the particular OpenGL context you're
using may not provide all of these buffers.)

Frame Buffer Operations

You can select into which buffer color values are written with giDrawBuffer(). In addition, four
different commands are used to mask the writing of bits to each of the logical frame buffers after all
per-fragment operations have been performed: glindexMask(), glColorMask(), glDepthMask(),
and glStencilMask(). The operation of the accumulation buffer is controlled with glAccum().
Finally, glClear() sets every pixel in a specified subset of the buffers to the value specified with
glClearColor(), glClearIndex(), glClearDepth(), glClearStencil(), or glClearAccum().

Reading or Copying Pixels

You can read pixels from the frame buffer into memory, encode them in various ways, and store the
encoded result in memory with glReadPixels(). In addition, you can copy a rectangle of pixel values
from one region of the frame buffer to another with glCopyPixels(). The command glReadBuffer()
controls from which color buffer the pixels are read or copied.

Additional OpenGL Commands

This section briefly describes special groups of commands that weren't explicitly shown as part of
OpenGL's processing pipeline. These commands accomplish such diverse tasks as evaluating
polynomials, using display lists, and obtaining the values of OpenGL state variables.

17

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Using Evaluators

OpenGL's evaluator commands allow you to use a polynomial mapping to produce vertices,
normals, texture coordinates, and colors. These calculated values are then passed on to the pipeline
as if they had been directly specified. The evaluator facility is also the basis for the NURBS (Non-
Uniform Rational B-Spline) commands, which allow you to define curves and surfaces, as described
later in this chapter under "OpenGL Utility Library."

The first step involved in using evaluators is to define the appropriate one- or two-dimensional
polynomial mapping using glMap*(). The domain values for this map can then be specified and
evaluated in one of two ways:

By defining a series of evenly spaced domain values to be mapped using glMapGrid*() and
then evaluating a rectangular subset of that grid with glEvalMesh*(). A single point of the
grid can be evaluated using glEvalPoint*().

By explicitly specifying a desired domain value as an argument to glEvalCoord*(), which
evaluates the maps at that value.

Performing Selection and Feedback

Selection, feedback, and rendering are mutually exclusive modes of operation. Rendering is the
normal, default mode during which fragments are produced by rasterization; in selection and
feedback modes, no fragments are produced and therefore no frame buffer modification occurs. In
selection mode, you can determine which primitives would be drawn into some region of a window;
in feedback mode, information about primitives that would be rasterized is fed back to the
application. You select among these three modes with giIRenderMode().

Selection

Selection works by returning the current contents of the name stack, which is an array of integer-
valued names. You assign the names and build the name stack within the modeling code that
specifies the geometry of objects you want to draw. Then, in selection mode, whenever a primitive
intersects the clip volume, a selection hit occurs. The hit record, which is written into the selection
array you've supplied with glSelectBuffer(), contains information about the contents of the name
stack at the time of the hit. (Note that glSelectBuffer() needs to be called before OpenGL is put into
selection mode with glIRenderMode(). Also, the entire contents of the name stack isn't guaranteed
to be returned until glRenderMode() is called to take OpenGL out of selection mode.) You
manipulate the name stack with glInitNames(), glLoadName(), glPushName(), and glPopName().
In addition, you might want to use an OpenGL Ultility Library routine for selection,
gluPickMatrix(), which is described later in this chapter under "OpenGL Ultility Library."

Feedback

In feedback mode, each primitive that would be rasterized generates a block of values that is copied
into the feedback array. You supply this array with glFeedbackBuffer(), which must be called

18

OpenGL Reference Manual (Addison-Wesley Publishing Company)

before OpenGL is put into feedback mode. Each block of values begins with a code indicating the
primitive type, followed by values that describe the primitive's vertices and associated data. Entries
are also written for bitmaps and pixel rectangles. Values are not guaranteed to be written into the
feedback array until glIRenderMode() is called to take OpenGL out of feedback mode. You can use
glPassThrough() to supply a marker that's returned in feedback mode as if it were a primitive.

Using Display Lists

A display list is simply a group of OpenGL commands that has been stored for subsequent
execution. The glNewList() command begins the creation of a display list, and glEndList() ends it.
With few exceptions, OpenGL commands called between glNewList() and glEndList() are
appended to the display list, and optionally executed as well. (The reference page for giNewList()
lists the commands that can't be stored and executed from within a display list.) To trigger the
execution of a list or set of lists, use glCallList() or glCallLists() and supply the identifying number
of a particular list or lists. You can manage the indices used to identify display lists with
glGenlLists(), glListBase(), and glIsList(). Finally, you can delete a set of display lists with
glDeleteLists().

Managing Modes and Execution

The effect of many OpenGL commands depends on whether a particular mode is in effect. You use
glEnable() and glDisable() to set such modes and glisEnabled() to determine whether a particular
mode is set.

You can control the execution of previously issued OpenGL commands with glFinish(), which
forces all such commands to complete, or glFlush(), which ensures that all such commands will be
completed in a finite time.

A particular implementation of OpenGL may allow certain behaviors to be controlled with hints, by
using the glHint() command. Possible behaviors are the quality of color and texture coordinate
interpolation, the accuracy of fog calculations, and the sampling quality of antialiased points, lines,
or polygons.

Obtaining State Information

OpenGL maintains numerous state variables that affect the behavior of many commands. Some of
these variables have specialized query commands:

glGetLight()
glGetMaterial()
glGetClipPlane()
glGetPolygonStipple()
glGetTexEnv()
glGetTexGen()
glGetTexImage()
glGetTexLevelParameter()

19

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glGetTexParameter()
glGetMap()
glGetPixelMap()

The value of other state variables can be obtained with glGetBooleanv(), glGetDoublev(),
glGetFloatv(), or glGetIntegerv(), as appropriate. The reference page for glGet*() explains how to
use these commands. Other query commands you might want to use are glGetError(),
glGetString(), and glisEnabled(). (See "Handling Errors" later in this chapter for more information
about routines related to error handling.) Finally, you can save and restore sets of state variables
with glPushAttrib() and glPopAttrib().

OpenGL Utility Library

The OpenGL Utility Library (GLU) contains several groups of commands that complement the core
OpenGL interface by providing support for auxiliary features. Since these utility routines make use
of core OpenGL commands, any OpenGL implementation is guaranteed to support the utility
routines. Note that the prefix for Utility Library routines is g/u rather than g/.

Manipulating Images for Use in Texturing

GLU provides image scaling and automatic mipmapping routines to simplify the specification of
texture images. The routine gluScaleImage() scales a specified image to an accepted texture size;
the resulting image can then be passed to OpenGL as a texture. The automatic mipmapping routines
gluBuild1DMipmaps() and gluBuild2DMipmaps() create mipmapped texture images from a
specified image and pass them to glTexImagelD() and glTexImage2D(), respectively.

Transforming Coordinates

Several commonly used matrix transformation routines are provided. You can set up a two-
dimensional orthographic viewing region with gluOrtho2D(), a perspective viewing volume using
gluPerspective(), or a viewing volume that's centered on a specified eyepoint with gluL.ookAt().
Each of these routines creates the desired matrix and applies it to the current matrix using
glMultMatrix().

The gluPickMatrix() routine simplifies selection by creating a matrix that restricts drawing to a
small region of the viewport. If you rerender the scene in selection mode after this matrix has been
applied, all objects that would be drawn near the cursor will be selected and information about them
stored in the selection buffer. See "Performing Selection and Feedback" earlier in this chapter for
more information about selection mode.

If you need to determine where in the window an object is being drawn, use gluProject(), which

converts specified coordinates from object coordinates to window coordinates; gluUnProject()
performs the inverse conversion.

20

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Polygon Tessellation

The polygon tessellation routines triangulate a concave polygon with one or more contours. To use
this GLU feature, first create a tessellation object with gluNewTess(), and define callback routines
that will be used to process the triangles generated by the tessellator (with gluTessCallBack()).
Then use gluBeginPolygon(), gluTessVertex(), gluNextContour(), and gluEndPolygon() to
specify the concave polygon to be tessellated. Unneeded tessellation objects can be destroyed with
gluDeleteTess().

Rendering Spheres, Cylinders, and Disks

You can render spheres, cylinders, and disks using the GLU quadric routines. To do this, create a
quadric object with gluNewQuadric(). (To destroy this object when you're finished with it, use
gluDeleteQuadric().) Then specify the desired rendering style, as listed below, with the appropriate
routine (unless you're satisfied with the default values):

" Whether surface normals should be generated, and if so, whether there should be one normal
per vertex or one normal per face: gluQuadricNormals()

Whether texture coodinates should be generated: gluQuadricTexture()

Which side of the quadric should be considered the outside and which the inside:
gluQuadricOrientation()

Whether the quadric should be drawn as a set of polygons, lines, or points:
gluQuadricDrawStyle()

After you've specified the rendering style, simply invoke the rendering routine for the desired type
of quadric object: gluSphere(), gluCylinder(), gluDisk(), or gluPartialDisk(). If an error occurs
during rendering, the error-handling routine you've specified with gluQuadricCallBack() is
invoked.

NURBS Curves and Surfaces

NURBS (Non-Uniform Rational B-Spline) curves and surfaces are converted to OpenGL evaluators
by the routines described in this section. You can create and delete a NURBS object with
gluNewNurbsRenderer() and gluDeleteNurbsRenderer(), and establish an error-handling routine
with gluNurbsCallback().

You specify the desired curves and surfaces with different sets of routines - gluBeginCurve(),
gluNurbsCurve(), and gluEndCurve() for curves or gluBeginSurface(), gluNurbsSurface(), and
gluEndSurface() for surfaces. You can also specify a trimming region, which defines a subset of
the NURBS surface domain to be evaluated, thereby allowing you to create surfaces that have
smooth boundaries or that contain holes. The trimming routines are gluBeginTrim(),
gluPwlCurve(), gluNurbsCurve(), and gluEndTrim().

As with quadric objects, you can control how NURBS curves and surfaces are rendered:

21

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Whether a curve or surface should be discarded if its control polyhedron lies outside the
current viewport

What the maximum length should be (in pixels) of edges of polygons used to render curves
and surfaces

Whether the projection matrix, modelview matrix, and viewport should be taken from the
OpenGL server or whether you'll supply them explictly with gluLoadSamplingMatrices()

Use gluNurbsProperty() to set these properties, or use the default values. You can query a NURBS
object about its rendering style with gluGetNurbsProperty().

Handling Errors

The routine gluErrorString() is provided for retrieving an error string that corresponds to an
OpenGL or GLU error code. The currently defined OpenGL error codes are described in the
glGetError() reference page. The GLU error codes are listed in the gluErrorString(),
gluTessCallback(), gluQuadricCallback(), and gluNurbsCallback() reference pages. Errors
generated by GLX routines are listed in the relevant reference pages for those routines.

OpenGL Extension to the X Window System

In the X Window System, OpenGL rendering is made available as an extension to X in the formal X
sense: connection and authentication are accomplished with the normal X mechanisms. As with
other X extensions, there is a defined network protocol for OpenGL's rendering commands
encapsulated within the X byte stream. Since performance is critical in three-dimensional rendering,
the OpenGL extension to X allows OpenGL to bypass the X server's involvement in data encoding,
copying, and interpretation and instead render directly to the graphics pipeline.

This section briefly discusses the routines defined as part of GLX; these routines have the prefix
glX. You'll need to have some knowledge of X in order to fully understand the following and to use
GLX successfully.

Initialization

Use glXQueryExtension() and gIXQueryVersion() to determine whether the GLX extension is
defined for an X server, and if so, which version is bound in the server. The gIXChooseVisual()
routine returns a pointer to an XVisuallnfo structure describing the visual that best meets the client's
specified attributes. You can query a visual about its support of a particular OpenGL attribute with
gIXGetConfig().

Controlling Rendering

Several GLX routines are provided for creating and managing an OpenGL rendering context.

22

OpenGL Reference Manual (Addison-Wesley Publishing Company)

YoSeveral GLX routines are provided for creating and managing an OpenGL rendering context.
You can use such a context to render off-screen if you want. Routines are also provided for such
tasks as synchronizing execution between the X and OpenGL streams, swapping front and back
buffers, and using an X font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created with gIXCreateContext(). One of the arguments to this
routine allows you to request a direct rendering context that bypasses the X server as described
above. (Note that in order to do direct rendering, the X server connection must be local and the
OpenGL implementation needs to support direct rendering.) You can determine whether a GLX
context is direct with glXIsDirect().

To make a rendering context current, use giXMakeCurrent(); gIXGetCurrentContext() returns
the current context. (You can also obtain the current drawable with gIXGetCurrentDrawable().)
Remember that only one context can be current for any thread at any one time. If you have multiple
contexts, you can copy selected groups of OpenGL state variables from one context to another with
glXCopyContext(). When you're finished with a particular context, destroy it with
glXDestroyContext().

Off-Screen Rendering

To render off-screen, first create an X Pixmap and then pass this as an argument to
glXCreateGLXPixmap(). Once rendering is completed, you can destroy the association between
the X and GLX Pixmaps with glXDestroyGLXPixmap(). (Off-screen rendering isn't guaranteed to
be supported for direct renderers.)

Synchronizing Execution

To prevent X requests from executing until any outstanding OpenGL rendering is completed, call
glXWaitGL(). Then, any previously issued OpenGL commands are guaranteed to be executed
before any X rendering calls made after gIXWaitGL(). Although the same result can be achieved
with glFinish(), gIXWaitGL() doesn't require a round trip to the server and thus is more efficient in
cases where the client and server are on separate machines.

To prevent an OpenGL command sequence from executing until any outstanding X requests are

completed, use gIXWaitX(). This routine guarantees that previously issued X rendering calls will be
executed before any OpenGL calls made after gIXWaitX().

Swapping Buffers

For drawables that are double-buffered, the front and back buffers can be exchanged by calling
glXSwapBuffers(). An implicit glFlush() is done as part of this routine.

23

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Using an X Font

A shortcut for using X fonts in OpenGL is provided with the command gIXUseXFont().

24

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Chapter 3
Summary of Commands and Routines

This chapter lists the prototypes for OpenGL, the OpenGL Ultility Library, and the OpenGL
extension to the X Window System. The prototypes are grouped functionally, as shown below:

OpenGL Commands

"Primitives"

"Coordinate Transformation"
"Coloring and Lighting"
"Clipping"

"Rasterization"

"Pixel Operations"

"Texture Mapping"

"Fog"

"Frame Buffer Operations"
"Evaluators"

"Selection and Feedback"
"Display Lists"

"Modes and Execution"
"State Queries"

" GLU Routines

"Texture Images"
"Coordinate Transformation"
"Polygon Tessellation"

" "Quadric Objects"

" "NURBS Curves and Surfaces"

25

OpenGL Reference Manual (Addison-Wesley Publishing Company)

"Error Handling"
"~ GLX Routines
"Initialization"

"Controlling Rendering"

Notation

Since some of the OpenGL commands differ from each other only by the data type of the arguments
they accept, certain conventions have been used to refer to these commands in a compact way:

void glVertex2{sifd}{v} (TYPE x, TYPE y);

In this example, the first set of braces encloses characters identifying the possible data types for the
arguments listed as having data type TYPE. (The digit preceding the braces indicates how many
arguments the command takes.) In this case, all the arguments have the placeholder TYPE, but in
other situations some arguments may have an explicitly defined data type. The table shown below
lists the set of possible data types, their corresponding characters, and the type definition OpenGL
uses for referring to that data type.

character data type C-language type OpenGL type definition

b 8-bit integer signed char GLbyte

S 16-bit integer short GLshort

1 32-bit integer int GLint, GLsizei

f 32-bit floating-point float GLfloat, GLclampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer unsigned int GLuint, GLenum, GLbitfield
void GLvoid

The second set of braces, if present, contains a v for the vector form of the command. If you choose
to use the vector form, all the TYPE arguments are collapsed into a single array. For example, here
are the nonvector and vector forms of a command, using a 32-bit floating-point data type:

void glVertex2f(GLfloat x, GLfloat y);
void glVertex2fv(GLfloat v[2]);

Where the use of the vector form is ambiguous, both the vector and nonvector forms are listed. Note
that not all commands with multiple arguments have a vector form and that some commands have
only a vector form, in which case the v isn't enclosed in braces.

26

OpenGL Reference Manual (Addison-Wesley Publishing Company)

OpenGL Commands

Primitives
Specify vertices or rectangles:

void glBegin (GLenum mode);

void glEnd (void);

void glVertex2{sifd}{v} (TYPE x, TYPE y);

void glVertex3{sifd}{v} (TYPE x, TYPE y, TYPE z);

void glVertex4{sifd}{v} (TYPE x, TYPE y, TYPE z, TYPE w);
void glRect{sifd} (TYPE x/, TYPE yI, TYPE x2, TYPE y2);
void glRect{sifd}v (const TYPE *v/, const TYPE *v2);

Specify polygon edge treatment:

void glEdgeFlag (GLboolean flag);
void glEdgeFlagv (const GLboolean *flag);

Coordinate Transformation

Transform the current matrix:

void glRotate{fd} (TYPE angle, TYPE x, TYPE y, TYPE z);
void glTranslate{fd} (TYPE x, TYPE y, TYPE z);

void glScale{fd} (TYPE x, TYPE y, TYPE z);

void glMultMatrix{fd} (const TYPE *m);

void glFrustum (GLdouble /eft, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near,

GLdouble far);

void glOrtho (GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near,

GLdouble far);
Replace the current matrix:

void glLoadMatrix{fd} (const TYPE *m);
void glLoadldentity (void);

Manipulate the matrix stack:

void glMatrixMode (GLenum mode);
void glPushMatrix (void);

void glPopMatrix (void);

Specify the viewport:

void glDepthRange (GLclampd near, GLclampd far);

27

OpenGL Reference Manual (Addison-Wesley Publishing Company)

void glViewport (GLint x, GLint y, GLsize1 width, GLsizei height);

Coloring and Lighting

Set the current color, color index, or normal vector:

void glColor3{bsifd ubusui}{v} (TYPE red, TYPE green, TYPE blue);
void glColor4{bsifd ubusui}{v} (TYPE red, TYPE green, TYPE blue, TYPE alpha);
void glIndex{sifd}{v} (TYPE index);

void glNormal3{bsifd}{v} (TYPE nx, TYPE ny, TYPE nz);

Specify light source, material, or lighting model parameter values:

void glLight{if}{v} (GLenum light, GLenum pname, TYPE param);
void glMaterial{if}{v} (GLenum face, GLenum pname, TYPE param);
void glLightModel{if}{v} (GLenum pname, TYPE param);

Choose a shading model:

void glShadeModel (GLenum mode);

Specity which polygon orientation is front-facing:

void glFrontFace (GLenum dir);

Cause a material color to track the current color:

void glColorMaterial (GLenum face, GLenum mode);

Obtain light source or material parameter values:

void glGetLight{if}v (GLenum /ight, GLenum pname, TYPE *params);
void glGetMaterial{if}v (GLenum face, GLenum pname, TYPE *params);
Clipping

Specify a clipping plane:

void glClipPlane (GLenum plane, const GLdouble *equation);

Return clipping plane coefficients:

void glGetClipPlane (GLenum plane, GLdouble *equation);

28

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Rasterization

Set the current raster position:

void glRasterPos2{sifd}{v}(TYPE x, TYPE y);
void glRasterPos3{sifd}{v}(TYPE x, TYPE y, TYPE z);

void glRasterPos4{sifd}{v}(TYPE x, TYPE y, TYPE z, TYPE w);
Specify a bitmap:

void gIBitmap (GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove,
GLfloat ymove, const GLubyte *bitmap);

Specify the dimensions of points or lines:

void glPointSize (GLfloat size);
void glLineWidth (GLfloat width);

Specify or return a stipple pattern for lines or polygons:

void glLineStipple (GLint factor, GLushort pattern);

void glPolygonStipple (const GLubyte *mask);

void glGetPolygonStipple (GLubyte *mask);

Choose how polygons are rasterized:

void glCullFace (GLenum mode);

void glPolygonMode (GLenum face, GLenum mode);

Pixel Operations

Select the source for pixel reads or copies:

void glReadBuffer (GLenum mode);

Read, write, and copy pixels:

void glReadPixels (GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum
type, GLvoid *pixels);

void glDrawPixels (GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid
*pixels);,

void glCopyPixels (GLint x, GLint y, GLsizei width, GLsizei height, GLenum type);

Specity or query how pixels are encoded or processed:

void glPixelStore{if} (GLenum pname, TYPE param);
void glPixelTransfer{if} (GLenum pname, TYPE param);

29

OpenGL Reference Manual (Addison-Wesley Publishing Company)

void glPixelMap{f usui}v (GLenum map, GLint mapsize, const TYPE *values);
void glGetPixelMap{f usui}v (GLenum map, TYPE *values);

Control pixel rasterization:

void glPixelZoom (GLfloat xfactor, GLfloat yfactor);

Texture Mapping
Control how a texture is applied to a fragment:

void glTexParameter{if}{v} (GLenum target, GLenum pname, TYPE param);
void glTexEnv{if}{v} (GLenum target, GLenum pname, TYPE param);

Set the current texture coordinates:

void glTexCoord1{sifd}{v} (TYPE s);

void glTexCoord2{sifd}{v} (TYPE s, TYPE ¢);

void glTexCoord3{sifd}{v} (TYPE s, TYPE ¢, TYPE r);

void glTexCoord4{sifd}{v} (TYPE s, TYPE ¢, TYPE r, TYPE ¢);

Control the generation of texture coordinates:

void glTexGen{ifd}{v} (GLenum coord, GLenum pname, TYPE param);

Specify a one- or two-dimensional texture image:

void glTexImagelD (GLenum target, GLint level, GLint components, GLsizei width, GLint border,
GLenum format, GLenum type, const GLvoid *pixels);

void glTexImage2D (GLenum target, GLint level, GLint components, GLsizei width, GLsizei
height, GLint border, GLenum format, GLenum type, const GLvoid *pixels);

Obtain texture-related parameter values:

void glGetTexEnv{if}v (GLenum target, GLenum pname, TYPE *params);

void glGetTexGen{ifd}v (GLenum coord, GLenum pname, TYPE *params);

void glGetTexImage (GLenum target, GLint level, GLenum format, GLenum #ype, GLvoid
*pixels);,

void glGetTexLevelParameter{if}v (GLenum target, GLint level, GLenum pname, TYPE
*params);

void glGetTexParameter{if}v (GLenum farget, GLenum pname, TYPE *params);

Fog

Set fog parameters:

void glFog{if}{v} (GLenum pname, TYPE param);

30

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Frame Buffer Operations
Control per-fragment testing:

void glScissor (GLint x, GLint y, GLsizei width, GLsizei height);
void glAlphaFunc (GLenum func, GLclampf ref);

void glStencilFunc (GLenum func, GLint ref, GLuint mask);
void gIStencilOp (GLenum fail, GLenum pass, GLenum zpass);
void glDepthFunc (GLenum func);

Combine fragment and frame buffer values:

void glBlendFunc (GLenum sfactor, GLenum dfactor);,
void glLogicOp (GLenum opcode);

Clear some or all buffers:
void glClear (GLbitfield mask);
Specify color, depth, and stencil values for clears:

void glClearAccum (GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha);

void glClearColor (GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha);
void glClearDepth (GLclampd depth);

void glClearIndex (GLfloat c);

void glClearStencil (GLint s);

Control buffers enabled for writing:

void glDrawBuffer (GLenum mode);

void glindexMask (GLuint mask);

void glColorMask (GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha);
void glDepthMask (GLboolean flag);

void glStencilMask (GLuint mask);

Operate on the accumulation buffer:

void glAccum (GLenum op, GLfloat value);

Evaluators
Define a one- or two-dimensional evaluator:
void giMap1{fd} (GLenum ftarget, TYPE ul, TYPE u2, GLint stride, GLint order, const TYPE
*k . .
‘points);

void giMap2{fd} (GLenum ftarget, TYPE ul, TYPE u2, GLint ustride, GLint uorder, TYPE vi,
TYPE v2, GLint vstride,

31

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GLint vorder, const TYPE *points);

Generate and evaluate a series of map domain values:

void giMapGrid1{fd} (GLint n, TYPE ul, TYPE u?2);

void gIMapGrid2{fd} (GLint un, TYPE ul, TYPE u2, GLint vn, TYPE vI, TYPE v2);
void glEvalMesh1 (GLenum mode, GLint i/, GLint i2);

void glEvalMesh2 (GLenum mode, GLint i/, GLint i2, GLint j/, GLint j2);

void glEvalPoint1 (GLint i),

void glEvalPoint2 (GLint i, GLint j);

Evaluate one- and two-dimensional maps at a specified domain coordinate:

void glEvalCoord1{fd}{v} (TYPE u);
void glEvalCoord2{fd}{v} (TYPE u, TYPE v);

Obtain evaluator parameter values:

void glGetMap{idf}v (GLenum target, GLenum gquery, TYPE *v);

Selection and Feedback
Control the mode and corresponding buffer:
GLint glRenderMode (GLenum mode);

void glSelectBuffer (GLsizei size, GLuint *buffer);
void glFeedbackBuffer (GLsizei size, GLenum type, GLfloat *buffer);

Supply a token for feedback mode:

void glPassThrough (GLfloat token);
Control the name stack for selection:

void glInitNames (void);

void glLoadName (GLuint name);

void glPushName (GLuint name);

void glPopName (void);

Display Lists

Create or delete display lists:

void glNewList (GLuint /ist, GLenum mode);

void glEndList (void);
void glDeleteLists (GLuint /ist, GLsizei range);

32

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Execute a display list or set of lists:

void glCallList (GLuint /is?),
void glCallLists (GLsizei n, GLenum #ype, const GLvoid */ists);

Manage display-list indices:

GLuint glGenLists (GLsizei range);

GLboolean gllsList (GLuint /is?);

void glListBase (GLuint base);

Modes and Execution

Enable, disable, and query modes:

void glEnable (GLenum cap);

void glDisable (GLenum cap);

GLboolean glisEnabled (GLenum cap);

Wait until all OpenGL commands have executed completely:
void glFinish (void);

Force all issued OpenGL commands to be executed:
void glFlush (void);

Specify hints for OpenGL operation:

void glHint (GLenum target, GLenum mode);

State Queries

Obtain information about an error or the current OpenGL connection:

GLenum glGetError (void);
const GLubyte * glGetString (GLenum name);

Query state variables:

void glGetBooleanv (GLenum pname, GLboolean *params);
void glGetDoublev (GLenum prame, GLdouble *params);
void glGetFloatv (GLenum pname, GLfloat *params);

void glGetIntegerv (GLenum pname, GLint *params);

Save and restore sets of state variables:

33

OpenGL Reference Manual (Addison-Wesley Publishing Company)

void glPushAttrib (GLbitfield mask);
void glPopAttrib (void);

GLU Routines

Texture Images
Magnify or shrink an image:

int gluScaleImage (GLenum format, GLint widthin, GLint heightin,GLenum typein, const void
*datain, GLint widthout, GLint heightout, GLenum typeout, void *dataout);,

Generate mipmaps for an image:

int gluBuild1DMipmaps (GLenum target, GLint components, GLint width, GLenum format,
GLenum type, void *data);

int gluBuild2DMipmaps (GLenum target, GLint components, GLint width, GLint height, GLenum
format, GLenum type, void *data);

Coordinate Transformation
Create projection or viewing matrices:

void gluOrtho2D (GLdouble /eft, GLdouble right, GLdouble bottom,GLdouble top);

void gluPerspective (GLdouble fovy, GLdouble aspect, GLdouble zNear, GLdouble zFar);
void gluPickMatrix (GLdouble x, GLdouble y, GLdouble width, GLdouble height, GLint
viewport[4]);

void gluLookAt (GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble
centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz);

Convert object coordinates to screen coordinates:

int gluProject (GLdouble objx, GLdouble objy, GLdouble objz, const GLdouble modelMatrix[16],
const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *winx, GLdouble *winy,
GLdouble *winz);

int gluUnProject (GLdouble winx, GLdouble winy, GLdouble winz, const GLdouble
modelMatrix[16], const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *objx,
GLdouble *o0bjy, GLdouble *0bjz);

Polygon Tessellation

Manage tessellation objects:

34

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GLUtriangulatorObj* gluNewTess (void);

void gluTessCallback (GLUtriangulatorObj *tobj, GLenum which, void (*fn)());
void gluDeleteTess (GLUtriangulatorObj *tobyj);

Describe the input polygon:

void gluBeginPolygon (GLUtriangulatorObj *foby);

void gluEndPolygon (GLUtriangulatorObj *tobyj);

void gluNextContour (GLUtriangulatorObj *tobj, GLenum type);

void gluTessVertex (GLUtriangulatorOb;j *fobj, GLdouble v[3], void *data);

Quadric Objects
Manage quadric objects:

GLUquadricObj* gluNewQuadric (void);
void gluDeleteQuadric (GLUquadricObj *state);
void gluQuadricCallback (GLUquadricObj *qobj, GLenum which, void (*fn)());

Control the rendering:

void gluQuadricNormals (GLUquadricObj *quadObject, GLenum normals);

void gluQuadricTexture (GLUquadricObj *quadObject, GLboolean textureCoords);
void gluQuadricOrientation (GLUquadricObj *quadObject, GLenum orientation),
void gluQuadricDrawStyle (GLUquadricObj *quadObject, GLenum drawStyle);

Specify a quadric primitive:

void gluCylinder (GLUquadricObj *qobj, GLdouble baseRadius,
GLdouble topRadius, GLdouble height, GLint slices, GLint stacks);
void gluDisk (GLUquadricObj *qobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint loops);

void gluPartialDisk (GLUquadricObj *qgobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint loops,

GLdouble startAngle, GLdouble sweepAngle);

void gluSphere (GLUquadricObj *qobj, GLdouble radius, GLint slices,
GLint stacks);

NURBS Curves and Surfaces
Manage a NURBS object:
GLUnurbsObj* gluNewNurbsRenderer (void);

void gluDeleteNurbsRenderer (GLUnurbsObj *nobj);
void gluNurbsCallback (GLUnurbsObj *nobj, GLenum which, void (*fn)());

35

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Create a NURBS curve:

void gluBeginCurve (GLUnurbsObj *nobj);

void gluEndCurve (GLUnurbsObj *nobj);

void gluNurbsCurve (GLUnurbsObj *nobj, GLint nknots, GLfloat *knot, GLint stride, GLfloat
*ctlarray, GLint order, GLenum type);

Create a NURBS surface:

void gluBeginSurface (GLUnurbsObj *nobj);void gluEndSurface (GLUnurbsObj *noby);
void gluNurbsSurface (GLUnurbsObj *nobj, GLint uknot count, GLfloat *uknot, GLint
vknot _count, GLfloat *vknot, GLint u_stride, GLint v_stride, GLfloat *ctlarray, GLint sorder,
GLint torder, GLenum type);

Define a trimming region:

void gluBeginTrim (GLUnurbsObj *noby);
void gluEndTrim (GLUnurbsObj *nobyj);
void gluPwlCurve (GLUnurbsObj *nobj, GLint count, GLfloat *array, GLint stride, GLenum

type);

Control NURBS rendering:

void gluLoadSamplingMatrices (GLUnurbsObj *nobj, const GLfloat modelMatrix[16], const
GLfloat projMatrix[16], const GLint viewport[4]);

void gluNurbsProperty (GLUnurbsObj *nobj, GLenum property, GLfloat value);

void gluGetNurbsProperty (GLUnurbsObj *nobj, GLenum property,

GLfloat *value);

Error Handling

Produce an error string from an OpenGL error code:

const GLubyte* gluErrorString (GLenum errorCode);

GLX Routines

Initialization
Determine whether the GLX extension is defined on the X server:

Bool gIXQueryExtension (Display *dpy, int *errorBase, int *eventBase);
Bool glXQueryVersion (Display *dpy, int *major, int *minor);

Obtain the desired visual:

36

OpenGL Reference Manual (Addison-Wesley Publishing Company)

XVisuallnfo* gIXChooseVisual (Display *dpy, int screen, int *attribList),

int glXGetConfig (Display *dpy, XVisuallnfo *vis, int attrib, int *value);

Controlling Rendering

Manage or query an OpenGL rendering context:

GLXContext glXCreateContext (Display *dpy, XVisuallnfo *vis, GLXContext shareList, Bool
direct),

void glXDestroyContext (Display *dpy, GLXContext ctx);

void gIXCopyContext (Display *dpy, GLXContext src, GLXContext dst, GLuint mask);
Bool gIXIsDirect (Display *dpy, GLXContext ctx);

Bool gIXMakeCurrent (Display *dpy, GLXDrawable draw, GLXContext ctx);
GLXContext gIXGetCurrentContext (void);

GLXDrawable gIXGetCurrentDrawable (void);

Perform off-screen rendering:

GLXPixmap glXCreateGLXPixmap (Display *dpy, XVisuallnfo *vis,

Pixmap pixmap);

void gIXDestroyGLXPixmap (Display *dpy, GLXPixmap pix);

Synchronize execution:

void gIXWaitGL (void);
void gIXWaitX (void);

Exchange front and back buffers:
void gIXSwapBuffers (Display *dpy, Window window);
Use an X font:

void gIXUseXFont (Font font, int first, int count, int listBase);

37

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Chapter 4

Defined Constants and Associated Commands

This chapter lists all the defined constants in OpenGL and their corresponding commands; these
constants might indicate a parameter name, a value for a parameter, a mode, a query target, or a
return value. The list is intended to be used as another index into the reference pages: if you

remember the name of a constant, you can use this table to find out which functions use it, and then
you can refer to the reference pages for those functions for more information. Note that all the
constants listed can be used directly by the corresponding commands; the reference pages list

additional, related commands that might be of interest.
Constant

GL 2D, GL 3D, GL 3D COLOR, GL COLOR TEXTURE,

GL 4D COLOR TEXTURE
GL 2 BYTES, GL 3 BYTES, GL 4 BYTES
GL_ACCUM

GL ACCUM ALPHA BITS, GL ACCUM BLUE BITS
GL_ACCUM BUFFER_BIT

GL _ACCUM CLEAR VALUE, GL ACCUM_GREEN BITS,

GL_ACCUM _RED BITS
GL_ADD

GL ALL ATTRIB BITS
GL_ALPHA

GL ALPHA BIAS
GL_ALPHA BITS

GL ALPHA SCALE

GL_ALPHA TEST

GL ALPHA TEST FUNC, GL ALPHA TEST REF
GL_ALWAYS

GL AMBIENT

GL AMBIENT AND DIFFUSE

GL_AND, GL AND INVERTED, GL AND REVERSE
GL_ATTRIB STACK DEPTH
GL_AUTO NORMAL

GL_AUXO through GL_ AUX3

38

Associated Commands
glFeedbackBuffer()

glCallLists()

glAccum()

glGet*()

glClear(), glPushAttrib()
glGet*()

glAccum()
glPushAttrib()
glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glPixelTransfer*(), glGet*()
glGet*()
glPixelTransfer®(), glGet*()
glEnable(), gllsEnabled(),
glGet*()

glGet*()

glAlphaFunc(),
glDepthFunc(),
glStencilFunc()
glLight*(), glGetLight*(),
glMaterial*(),
glGetMaterial*(),
glColorMaterial()
glMaterial*(),
glGetMaterial*(),
glColorMaterial()
glLogicOp()

glGet*()

glEnable(), gllsEnabled(),
glGet*()

glDrawBuffer(),

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_AUX_BUFFERS
GL BACK

GL BACK LEFT, GL BACK RIGHT

GL BITMAP

GL BITMAP_TOKEN
GL BLEND

GL BLEND DST, GL BLEND SRC
GL BLUE

GL BLUE BIAS
GL BLUE_BITS
GL BLUE SCALE
GL BYTE

GL CCW
GL_CLAMP

GL CLEAR

GL_CLIP PLANE

GL_CLIP_PLANEO through GL_CLIP_PLANES

GL_COEFF
GL_COLOR
GL_COLOR_BUFFER_BIT
GL_COLOR_CLEAR VALUE
GL_COLOR_INDEX

GL COLOR_INDEXES

glReadBuffer()

glGet*()

glColorMaterial(),
glCullFace(), glDrawBuffer(),
glReadBuffer(), glMaterial*(),
glGetMaterial*(),
glPolygonMode()
glDrawBuffer(),
glReadBuffer()
glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glPassThrough()
glTexEnv*(),
glGetTexEnv*(), glEnable(),
gllsEnabled(), glGet*()
glGet*()

glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()

glPixel Transfer®(), glGet*()
glGet*()

glPixelTransfer*(), glGet*()
glCallLists(), glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glFrontFace()
glTexParameter™®()
glLogicOp()

glEnable(), gllsEnabled()
glClipPlane(),
glGetClipPlane(), glEnable(),
gllsEnabled()

glGetMap*()
glCopyPixels()

glClear(), glPushAttrib()
glGet*()

glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glMaterial*(),

39

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glGetMaterial*()

GL COLOR_MATERIAL glEnable(), gllsEnabled(),
glGet*()

GL _COLOR_MATERIAL FACE, glGet*()

GL _COLOR_MATERIAL PARAMETER

GL_COLOR_WRITEMASK glGet™*()

GL_COMPILE, GL COMPILE_AND EXECUTE gINewList()

GL_CONSTANT ATTENUATION glLight*(), glGetLight*()

GL _COPY, GL COPY_INVERTED glLogicOp()

GL _COPY_PIXEL TOKEN glPassThrough()

GL CULL FACE glEnable(), gllsEnabled(),
glGet*()

GL _CULL FACE MODE glGet*()

GL _CURRENT BIT glPushAttrib()

GL_CURRENT_COLOR, GL_CURRENT INDEX, glGet*()

GL CURRENT NORMAL, GL CURRENT RASTER COLOR,
GL CURRENT RASTER INDEX,

GL _CURRENT RASTER POSITION,

GL CURRENT RASTER POSITION_ VALID,

GL _CURRENT RASTER TEXTURE COORDS,

GL _CURRENT TEXTURE COORDS

GL CW glFrontFace()

GL DECAL glTexEnv*(), glGetTexEnv*()

GL DECR glStencilOp()

GL DEPTH glCopyPixels()

GL DEPTH_BIAS glPixel Transfer*(), glGet*()

GL DEPTH_BITS glGet*()

GL _DEPTH_BUFFER BIT glClear(), glPushAttrib()

GL DEPTH_CLEAR VALUE glGet*()

GL _DEPTH_COMPONENT glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()

GL _DEPTH_FUNC glGet*()

GL DEPTH_RANGE glGet*()

GL DEPTH SCALE glPixel Transfer*(), glGet*()

GL DEPTH_TEST glEnable(), gllsEnabled(),
glGet*()

GL DEPTH_WRITEMASK glGet*()

GL DIFFUSE glLight*(), glGetLight*(),
glMaterial*(),
glGetMaterial*(),
glColorMaterial()

GL DITHER glEnable(), gllsEnabled(),
glGet*()

GL DOMAIN glGetMap*()

GL DONT CARE glHint()

GL_DOUBLEBUFFER glGet*()

40

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL DRAW BUFFER
GL DRAW PIXEL TOKEN

GL DST ALPHA, GL DST COLOR

GL _EDGE FLAG
GL_EMISSION

GL_ENABLE_BIT
GL EQUAL

GL_EQUIV
GL EVAL BIT
GL_EXP, GL EXP2
GL_EXTENSIONS
GL EYE LINEAR
GL EYE PLANE
GL FALSE

GL _FASTEST
GL_FEEDBACK
GL FILL

GL FLAT
GL FLOAT

GL _FOG

GL FOG BIT

GL FOG COLOR, GL FOG DENSITY, GL_ FOG _END

GL _FOG_HINT

GL FOG_INDEX, GL_ FOG MODE, GL_FOG _START

GL _FRONT

GL_FRONT AND BACK

GL FRONT FACE

GL FRONT LEFT, GL FRONT RIGHT

GL GEQUAL, GL GREATER

glGet*()

glPassThrough()
glBlendFunc()

glGet*()

glMaterial*(),
glGetMaterial*(),
glColorMaterial()
glPushAttrib()
glAlphaFunc(),
glDepthFunc(),
glStencilFunc()

glLogicOp()

glPushAttrib()

glFog*()

glGetString()

glTexGen*(), glGetTexGen*()
glTexGen*()

glColorMask(), glGet*(),
gllsEnabled(), gllsList()
glHint()

glRenderMode()
glPolygonMode(),
glEvalMesh2()
glShadeModel()
glCallLists(), glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()

glEnable(), gllsEnabled(),
glGet*()

glPushAttrib()

glFog*(), glGet*()

glHint()

glFog*(), glGet*()
glColorMaterial(),
glCullFace(), glDrawBuffer(),
glReadBuffer(), glMaterial*(),
glGetMaterial*(),
glPolygonMode()
glColorMaterial(),
glDrawBufter(), glMaterial*(),
glPolygonMode()

glGet*()

glDrawBuffer(),
glReadBuffer()
glDepthFunc(),
glAlphaFunc(),
glStencilFunc()

41

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL _GREEN

GL_GREEN BIAS
GL_GREEN BITS

GL GREEN SCALE

GL_HINT BIT

GL_INCR

GL_INDEX BITS, GL_INDEX_CLEAR VALUE,
GL_INDEX MODE

GL_INDEX OFFSET, GL INDEX SHIFT
GL_INDEX_ WRITEMASK

GL_INT

GL INVALID ENUM, GL INVALID OPERATION,
GL INVALID VALUE

GL_INVERT

GL_KEEP

GL LEFT

GL LEQUAL, GL LESS

GL_LIGHTO through GL_LIGHT?7
GL_LIGHTING

GL LIGHTING BIT
GL LIGHT MODEL AMBIENT,

GL LIGHT MODEL LOCAL VIEWER,
GL_LIGHT MODEL TWO SIDE

GL LINE

GL_LINEAR
GL_LINEAR ATTENUATION
GL_LINEAR MIPMAP LINEAR,
GL_LINEAR MIPMAP NEAREST
GL LINES

GL_LINE_BIT

GL_LINE _LOOP

GL _LINE RESET TOKEN

GL LINE SMOOTH

GL LINE SMOOTH_HINT

42

glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glPixelTransfer*(), glGet*()
glGet*()

glPixel Transfer*(), glGet*()
glPushAttrib()
glStencilOp()

glGet*()

glPixel Transfer®(), glGet*()
glGet™*()

glCallLists(), glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glGetError()

glLogicOp(), glStencilOp()
glStencilOp()
glDrawBufter(),
glReadBuffer()
glDepthFunc(),
glAlphaFunc(),
glStencilFunc()
glLight*(), glGetLight*(),
glEnable(), gllsEnabled()
glEnable(), gllsEnabled(),
glGet*()

glPushAttrib()
glLightModel*(), glGet*()

glPolygonMode(),
glEvalMesh*()

glFog*(), glTexParameter*()
glLight*(), glGetLight*()
glTexParameter™®()

glBegin()

glPushAttrib()

glBegin()
glPassThrough()
glEnable(), gllsEnabled(),
glGet*()

glHint(), glGet*()

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL LINE STIPPLE

GL LINE STIPPLE PATTERN, GL LINE STIPPLE REPEAT

GL_LINE_STRIP
GL _LINE TOKEN

GL LINE WIDTH, GL_LINE WIDTH GRANULARITY,
GL LINE WIDTH RANGE

GL LIST BASE

GL _LIST BIT

GL LIST INDEX, GL LIST MODE

GL LOAD

GL_LOGIC_OP

GL LOGIC OP _MODE
GL_LUMINANCE, GL_ LUMINANCE ALPHA

GL MAPI COLOR 4

GL MAP! GRID DOMAIN, GL MAP! GRID SEGMENTS
GL MAP! INDEX, GL MAP1 NORMAL,

GL MAP! TEXTURE COORD 1 through

GL MAP1 TEXTURE COORD 4, GL MAP1 VERTEX 3,
GL MAP! VERTEX 4

GL_MAP2_COLOR 4

GL_MAP2_GRID DOMAIN
GL_MAP2_GRID SEGMENTS

GL_MAP2_INDEX, GL MAP2 NORMAL,
GL_MAP2_TEXTURE COORD 1 through

GL MAP2_TEXTURE COORD 4, GL_ MAP2 VERTEX 3,
GL_MAP2_VERTEX 4

GL MAP COLOR, GL_ MAP_STENCIL

GL MATRIX MODE

glEnable(), gllsEnabled(),
glGet*()

glGet™*()

glBegin()
glPassThrough()

glGet*()

glGet*()

glPushAttrib()

glGet*()

glAccum()

glEnable(), gllsEnabled(),
glGet*()

glGet™*()

glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glMap1*(), glEnable(),
gllsEnabled(), glGetMap*()
glGet*()

glMap1*(), glEnable(),
gllsEnabled(), glGetMap*()

glMap2*(), glEnable(),
gllsEnabled(), glGet™*()
glGet™*()
glGet™*()
glMap2*(), glEnable(),
gllsEnabled(), glGet*()

glPixelTransfer*(), glGet*()
glGet™*()

GL MAX ATTRIB STACK DEPTH, GL MAX CLIP PLANES, glGet*()

GL MAX EVAL ORDER, GL MAX LIGHTS,
GL MAX_LIST NESTING,

GL MAX MODELVIEW STACK DEPTH,
GL MAX NAME STACK DEPTH,

GL MAX PIXEL MAP TABLE,

GL MAX PROJECTION STACK DEPTH,
GL MAX_TEXTURE SIZE,

GL MAX TEXTURE STACK DEPTH,
GL MAX_VIEWPORT DIMS
GL_MODELVIEW

GL MODELVIEW MATRIX,
GL_MODELVIEW STACK DEPTH

glMatrixMode()
glGet*()

43

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL MODULATE
GL MULT

GL NAME_STACK DEPTH

GL_NAND

GL NEAREST, GL NEAREST MIPMAP LINEAR,
GL NEAREST MIPMAP NEAREST

GL NEVER

GL NICEST
GL NONE
GL_NOOP, GL NOR
GL NORMALIZE

GL NOTEQUAL

GL NO ERROR
GL OBJECT LINEAR

GL_OBJECT PLANE

GL_ONE, GL_ ONE MINUS DST ALPHA,
GL_ONE_MINUS_DST COLOR,
GL_ONE_MINUS_SRC ALPHA,
GL_ONE_MINUS_SRC COLOR

GL OR, GL_OR_INVERTED, GL OR_REVERSE
GL_ORDER

GL_OUT OF MEMORY

GL PACK_ALIGNMENT, GL PACK_LSB FIRST,

GL PACK_ROW LENGTH, GL PACK_SKIP PIXELS,

GL PACK _SKIP ROWS, GL PACK_SWAP BYTES
GL PASS_THROUGH TOKEN

GL_PERSPECTIVE CORRECTION HINT

GL PIXEL MAP * TO *

GL PIXEL MAP * TO * SIZE
GL PIXEL MODE BIT
GL _POINT

GL POINTS
GL POINT BIT

GL POINT SIZE, GL POINT SIZE GRANULARITY,
GL POINT SIZE RANGE

GL POINT SMOOTH

GL POINT SMOOTH_HINT
GL POINT TOKEN
GL_POLYGON

GL POLYGON BIT

GL POLYGON MODE

44

glTexEnv*(), glGetTexEnv*()
glAccum()

glGet™*()

glLogicOp()
glTexParameter™®()

glDepthFunc(),
glAlphaFunc(),
glStencilFunc()

glHint()

glDrawBufter()
glLogicOp()

glEnable(), gllsEnabled(),
glGet*()

glDepthFunc(),
glAlphaFunc(),
glStencilFunc()
glGetError()
glTexGen*(), glGetTexGen*()
glTexGen*()
glBlendFunc()

glLogicOp()
glGetMap*()
glGetError()
glPixelStore*(), glGet*()

glPassThrough()
glHint(), glGet*()
glPixelMap*(),
glGetPixelMap*()
glGet*()
glPushAttrib()
glPolygonMode(),
glEvalMesh*()
glBegin()
glPushAttrib()
glGet*()

glEnable(), gllsEnabled(),
glGet*()

glHint(), glGet*()
glPassThrough()
glBegin()

glPushAttrib()

glGet™*()

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL POLYGON_SMOOTH

GL POLYGON SMOOTH_HINT
GL POLYGON_STIPPLE

GL POLYGON STIPPLE BIT
GL POLYGON TOKEN

GL _POSITION

GL_PROJECTION

GL PROJECTION MATRIX,
GL_PROJECTION STACK DEPTH
GL Q
GL_QUADRATIC_ATTENUATION
GL_QUADS, GL QUAD STRIP
GL R

GL READ BUFFER

GL _RED

GL RED BIAS
GL _RED BITS

GL RED SCALE
GL_RENDER
GL_RENDERER
GL_RENDER_MODE
GL_REPEAT
GL_REPLACE
GL_RETURN

GL RGB

GL RGBA

GL RGBA_ MODE
GL_RIGHT

GL S
GL_SCISSOR BIT

GL_SCISSOR BOX
GL_SCISSOR_TEST

GL _SELECT

glEnable(), gllsEnabled(),
glGet*()

glHint(), glGet*()
glEnable(), gllsEnabled(),
glGet*()

glPushAttrib()
glPassThrough()
glLight*(), glGetLight*()
glMatrixMode()

glGet™*()

glTexGen*(), glGetTexGen*()
glLight*(), glGetLight*()
glBegin()

glTexGen*(), glGetTexGen*()
glGet*()

glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glPixelTransfer*(), glGet*()
glGet™*()
glPixelTransfer*(), glGet*()
glRenderMode()
glGetString()

glGet*()

glTexParameter™®()
glStencilOp()

glAccum()

glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()

glGet*()

glDrawBuffer(),
glReadBuffer()
glTexGen*(), glGetTexGen*()
glPushAttrib()

glGet*()

glEnable(), gllsEnabled(),
glGet*()

glRenderMode()

45

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL SET
GL_SHININESS

GL_SHADE_MODEL
GL_SHORT

GL _SMOOTH
GL _SPECULAR

GL_SPHERE MAP
GL _SPOT CUTOFF, GL_SPOT DIRECTION,
GL_SPOT EXPONENT

GL_SRC_ALPHA, GL SRC_ALPHA SATURATE,
GL_SRC_COLOR

GL_STACK_OVERFLOW, GL_STACK_UNDERFLOW
GL_STENCIL

GL_STENCIL BITS

GL_STENCIL BUFFER BIT

GL_STENCIL INDEX

GL _STENCIL CLEAR VALUE, GL STENCIL FAIL,

GL_STENCIL FUNC, GL_STENCIL PASS DEPTH FAIL,
GL_STENCIL PASS DEPTH PASS, GL STENCIL REF

GL_STENCIL TEST

GL STENCIL VALUE MASK, GL STENCIL WRITEMASK

GL_STEREO
GL_SUBPIXEL BITS
GL T

GL TEXTURE

GL TEXTURE_1D

GL TEXTURE 2D

46

glLogicOp()

glMaterial*(),
glGetMaterial*()

glGet*()

glCallLists(), glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glShadeModel()

glLight*(), glGetLight*(),
glMaterial*(),
glGetMaterial*(),
glColorMaterial()
glTexGen*(), glGetTexGen*()
glLight*(), glGetLight*()

glBlendFunc()

glGetError()
glCopyPixels()

glGet™*()

glClear(), glPushAttrib()
glDrawPixels(),
glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()
glGet*()

glEnable(), gllsEnabled(),
glGet*()

glGet™*()

glGet™*()

glGet*()

glTexGen*(), glGetTexGen*()
glMatrixMode()
glTexImage1D(),
glGetTexImage(),
glTexParameter*(),
glGetTexParameter*(),
glGetTexLevelParameter™®(),
glEnable(), gllsEnabled(),
glGet*()

glTexImage2D(),
glGetTexImage(),
glTexParameter*(),
glGetTexParameter*(),

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_TEXTURE_BIT
GL_TEXTURE_BORDER

GL TEXTURE BORDER COLOR

GL TEXTURE COMPONENTS

GL TEXTURE ENV, GL_ TEXTURE_ENV_COLOR,
GL TEXTURE ENV_MODE

GL TEXTURE GEN_MODE

GL TEXTURE GEN_Q, GL TEXTURE GEN R,
GL TEXTURE GEN_S, GL_ TEXTURE GEN T
GL_TEXTURE HEIGHT

GL TEXTURE MAG FILTER

GL TEXTURE MATRIX
GL_TEXTURE MIN FILTER

GL TEXTURE STACK DEPTH
GL TEXTURE WIDTH

GL TEXTURE WRAP S, GL TEXTURE WRAP T

GL _TRANSFORM BIT

glGetTexLevelParameter™®(),
glEnable(), gllsEnabled(),
glGet*()

glPushAttrib()
glGetTexParameter*(),
glGetTexLevelParameter®()
glTexParameter®(),
glGetTexParameter*(),
glGetTexLevelParameter®()
glGetTexParameter*(),
glGetTexLevelParameter®()
glTexEnv*(), glGetTexEnv*()

glTexGen*()

glEnable(), gllsEnabled(),
glGet*()
glGetTexParameter*(),
glGetTexLevelParameter®()
glTexParameter®(),
glGetTexParameter*(),
glGetTexLevelParameter®()
glGet*()
glTexParameter®(),
glGetTexParameter*(),
glGetTexLevelParameter®()
glGet™*()
glGetTexParameter*(),
glGetTexLevelParameter®()
glTexParameter™®(),
glGetTexParameter*(),
glGetTexLevelParameter®()
glPushAttrib()

GL _TRIANGLES, GL TRIANGLE FAN, GL_TRIANGLE_STRIP glBegin()

GL TRUE

glColorMask(), glGet*(),
gllsEnabled(), gllsList()

GL_UNPACK_ALIGNMENT, GL_UNPACK LSB FIRST,
GL_UNPACK_ROW LENGTH, GL_UNPACK_SKIP PIXELS,
GL_UNPACK_SKIP ROWS, GL_ UNPACK_SWAP BYTES
GL_UNSIGNED BYTE, GL UNSIGNED INT,

glPixelStore*(), glGet*()

glCallLists(), glDrawPixels(),

GL_UNSIGNED SHORT glReadPixels(),
glTexImagel1D(),
glTexImage2D(),
glGetTexImage()

GL_VENDOR, GL _VERSION glGetString()

GL_VIEWPORT glGet*()

GL _VIEWPORT BIT glPushAttrib()

GL XOR glLogicOp()

GL ZERO glBlendFunc(), glStencilOp()

GL ZOOM_X, GL ZOOM Y glGet*()

47

OpenGL Reference Manual (Addison-Wesley Publishing Company)

48

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Chapter 5
OpenGL Reference Pages

This chapter contains the reference pages, in alphabetical order, for all the OpenGL commands.
Each reference page may describe more than one related command, as shown in the following list of
pages. The OpenGL Utility Library routines and those comprising the OpenGL extension to the X
Window System are described in the following chapters

glAccum

NAME

glAccum - operate on the accumulation buffer

C SPECIFICATION

void glAccum(GLenum op, GLfloat value)

PARAMETERS

op

Specifies the accumulation buffer operation. Symbolic constants GL_ACCUM, GL_LOAD,
GL_ADD, GL_MULT, and GL_RETURN are accepted.

value

Specifies a floating-point value used in the accumulation buffer operation. op determines how
value is used.

DESCRIPTION

The accumulation buffer is an extended-range color buffer. Images are not rendered into it. Rather,
images rendered into one of the color buffers are added to the contents of the accumulation buffer
after rendering. Effects such as antialiasing (of points, lines, and polygons), motion blur, and depth
of field can be created by accumulating images generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha values. The number of
bits per component in the accumulation buffer depends on the implementation. You can examine
this number by calling glGetIntegerv four times, with arguments GL_ACCUM_RED_BITS,
GL_ACCUM_GREEN_BITS, GL_ACCUM_BLUE_BITS, and GL_ACCUM_ALPHA_BITS,

49

OpenGL Reference Manual (Addison-Wesley Publishing Company)

respectively. Regardless of the number of bits per component, however, the range of values stored
by each component is [-1, 1]. The accumulation buffer pixels are mapped one-to-one with frame
buffer pixels.

glAccum operates on the accumulation buffer. The first argument, op, is a symbolic constant that
selects an accumulation buffer operation. The second argument, value, is a floating-point value to be
used in that operation. Five operations are specified: GL_ ACCUM, GL_LOAD, GL_ADD,
GL_MULT, and GL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box and are applied
identically to the red, green, blue, and alpha components of each pixel. The contents of an
accumulation buffer pixel component are undefined if the glAccum operation results in a value
outside the range [-1,1]. The operations are as follows:

GL_ACCUM

Obtains R, G, B, and A values from the buffer currently selected for reading (see
"g]ReadBuffer" .) Each component value is divided by 2n - 1, where 7 is the number of bits
allocated to each color component in the currently selected buffer. The result is a floating-
point value in the range [0,1], which is multiplied by value and added to the corresponding
pixel component in the accumulation buffer, thereby updating the accumulation buffer.

GL_LOAD

Similar to GL_ACCUM, except that the current value in the accumulation buffer is not used
in the calculation of the new value. That is, the R, G, B, and A values from the currently
selected buffer are divided by 2n - 1, multiplied by value, and then stored in the corresponding
accumulation buffer cell, overwriting the current value.

GL_ADD
Adds value to each R, G, B, and A in the accumulation buffer.
GL_MULT

Multiplies each R, G, B, and A in the accumulation buffer by value and returns the scaled
component to its corresponding accumulation buffer location.

GL_RETURN

Transfers accumulation buffer values to the color buffer or buffers currently selected for
writing. Each R, G, B, and A component is multiplied by value, then multiplied by 2n - 1,
clamped to the range [0, 2n - 1], and stored in the corresponding display buffer cell. The only
fragment operations that are applied to this transfer are pixel ownership, scissor, dithering,
and color writemasks.

The accumulation buffer is cleared by specifying R, G, B, and A values to set it to with the
glClearAccum directive, and issuing a glClear command with the accumulation buffer enabled.

50

OpenGL Reference Manual (Addison-Wesley Publishing Company)

NOTES

Only those pixels within the current scissor box are updated by any glAccum operation.

ERRORS

GL_INVALID ENUM is generated if op is not an accepted value.

GL_INVALID OPERATION is generated if there is no accumulation buffer.

GL_INVALID OPERATION is generated if glAccum is called between a call to glBegin and the
corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ ACCUM_RED_BITS

glGet with argument GL_ ACCUM_GREEN_BITS

glGet with argument GL_ACCUM_BLUE_BITS

glGet with argument GL_ ACCUM_ALPHA _BITS

SEE ALSO

"glBlendFunc", "glClear" , "glClearAccum" , "glCopyPixels" , "glGet" ,"glLogicOp" ,"glPixelStore"
, "glPixelTransfer" , "glReadPixels" , "glReadBuffer" , "glScissor" , "glStencilOp"

glAlphaFunc

NAME

glAlphaFunc - specify the alpha test function

C SPECIFICATION

void glAlphaFunc(GLenum func, GLclampf ref’)

PARAMETERS

func

Specifies the alpha comparison function. Symbolic constants GL_NEVER, GL_LESS,
GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and

51

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_ALWAYS are accepted. The default function is GL_ ALWAYS.

ref
Specifies the reference value that incoming alpha values are compared to. This value is
clamped to the range 0 through 1, where 0 represents the lowest possible alpha value and 1 the
highest possible value. The default reference is 0.

DESCRIPTION

The alpha test discards fragments depending on the outcome of a comparison between the incoming
fragment's alpha value and a constant reference value. glAlphaFunc specifies the reference and
comparison function. The comparison is performed only if alpha testing is enabled. (See "glEnable"
and glDisable of GL_ ALPHA TEST.)
func and ref specify the conditions under which the pixel is drawn. The incoming alpha value is
compared to ref using the function specified by func. If the comparison passes, the incoming
fragment is drawn, conditional on subsequent stencil and depth buffer tests. If the comparison fails,
no change is made to the frame buffer at that pixel location.
The comparison functions are as follows:
GL_NEVER

Never passes.
GL_LESS

Passes if the incoming alpha value is less than the reference value.
GL_EQUAL

Passes if the incoming alpha value is equal to the reference value.
GL_LEQUAL

Passes if the incoming alpha value is less than or equal to the reference value.
GL_GREATER

Passes if the incoming alpha value is greater than the reference value.
GL_NOTEQUAL

Passes if the incoming alpha value is not equal to the reference value.

GL_GEQUAL

52

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Passes if the incoming alpha value is greater than or equal to the reference value.
GL_ALWAYS

Always passes.
glAlphaFunc operates on all pixel writes, including those resulting from the scan conversion of

points, lines, polygons, and bitmaps, and from pixel draw and copy operations. glAlphaFunc does
not affect screen clear operations.

NOTES

Alpha testing is done only in RGBA mode.

ERRORS

GL_INVALID ENUM is generated if func is not an accepted value.

GL_INVALID OPERATION is generated if glAlphaFunc is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ALPHA TEST FUNC

glGet with argument GL_ ALPHA TEST_ REF

glIsEnabled with argument GL_ALPHA_ TEST

SEE ALSO

"glBlendFunc", "glClear" , "glDepthFunc" , "glEnable" , "glStencilFunc"

glBegin

NAME

glBegin, glEnd - delimit the vertices of a primitive or a group of like primitives

C SPECIFICATION

void glBegin(GLenum mode)

53

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS

mode

Specifies the primitive or primitives that will be created from vertices presented between
glBegin and the subsequent glEnd. Ten symbolic constants are accepted: GL_ POINTS,
GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES,
GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP, and
GL_POLYGON.

C SPECIFICATION

void glEnd(void)

DESCRIPTION

glBegin and glEnd delimit the vertices that define a primitive or a group of like primitives. giBegin
accepts a single argument that specifies which of ten ways the vertices are interpreted. Taking » as
an integer count starting at one, and N as the total number of vertices specified, the interpretations
are as follows:

GL_POINTS
Treats each vertex as a single point. Vertex n defines point n. N points are drawn.
GL_LINES

Treates each pair of vertices as an independent line segment. Vertices 2n-1 and 2n define line
n. N/2 lines are drawn.

GL_LINE_STRIP

Draws a connected group of line segments from the first vertex to the last. Vertices n and n+1
define line n. N-1 lines drawn.

GL_LINE_LOOP
Draws a connected group of line segments from the first vertex to the last, then back to the
first. Vertices n and n+1 define line n. The last line, however, is defined by vertices N and 1.
N lines are drawn.

GL_TRIANGLES

Treates each triplet of vertices as an independent triangle. Vertices 3n-2, 3n-1, and 3n define
triangle n. N/3 triangles are drawn.

GL_TRIANGLE_STRIP

54

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Draws a connected group of triangles. One triangle is defined for each vertex presented after
the first two vertices. For odd n, vertices n, n+1, and n+2 define triangle n. For even n,
vertices n+1, n, and n+2 define triangle n. N-2 triangles are drawn.

GL_TRIANGLE_FAN

Draws a connected group of triangles. One triangle is defined for each vertex presented after
the first two vertices. Vertices /, n+1, and n+2 define triangle n. N-2 triangles are drawn.

GL_QUADS

Treats each group of four vertices as an independent quadrilateral. Vertices 4n-3, 4n-2, 4n-1,
and 4n define quadrilateral n. N/4 quadrilaterals are drawn.

GL_QUAD STRIP

Draws a connected group of quadrilaterals. One quadrilateral is defined for each pair of
vertices presented after the first pair. Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral
n. N/2-1 quadrilaterals are drawn. Note that the order in which vertices are used to construct a
quadrilateral from strip data is different from that used with independent data.

GL_POLYGON
Draws a single, convex polygon. Vertices / through N define this polygon.

Only a subset of GL commands can be used between glBegin and glEnd. The commands are
glVertex, glColor, glindex, gINormal, glTexCoord, glEvalCoord, glEvalPoint, glMaterial, and
glEdgeFlag. Also, it is acceptable to use glCallList or glCallLists to execute display lists that
include only the preceding commands. If any other GL command is called between glBegin and
glEnd, the error flag is set and the command is ignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices that can be
defined between glBegin and glEnd. Lines, triangles, quadrilaterals, and polygons that are
incompletely specified are not drawn. Incomplete specification results when either too few vertices
are provided to specify even a single primitive or when an incorrect multiple of vertices is specified.
The incomplete primitive is ignored; the rest are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point, 2 for a line, 3

for a triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a certain multiple of
vertices are GL_LINES (2), GL_TRIANGLES (3), GL_QUADS (4), and GL_QUAD_STRIP

Q).

ERRORS
GL_INVALID ENUM is generated if mode is set to an unaccepted value.

GL_INVALID OPERATION is generated if a command other than glVertex, glColor, glindex,

33

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glNormal, glTexCoord, glEvalCoord, glEvalPoint, glMaterial, glIEdgeFlag, glCallList, or
glCallLists is called between glBegin and the corresponding glEnd.

GL_INVALID OPERATION is generated if glEnd is called before the corresponding glBegin is
called, or if glBegin is called within a glBegin/glEnd sequence.
SEE ALSO

"glCallList", "glCallLists" , "glColor" , "glEdgeFlag" , "glEvalCoord" , "glEvalPoint" , "glindex" ,
"g]lMaterial" , "gINormal" , "glTexCoord" , "glVertex"

glBitmap

NAME

glBitmap - draw a bitmap

C SPECIFICATION

void glBitmap(GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove,
GLfloat ymove, const GLubyte *bitmap)

PARAMETERS
width, height

Specify the pixel width and height of the bitmap image.
xorig, yorig

Specify the location of the origin in the bitmap image. The origin is measured from the lower
left corner of the bitmap, with right and up being the positive axes.

xmove, ymove
Specify the x and y offsets to be added to the current raster position after the bitmap is drawn.
bitmap

Specifies the address of the bitmap image.

56

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

A bitmap is a binary image. When drawn, the bitmap is positioned relative to the current raster
position, and frame buffer pixels corresponding to ones in the bitmap are written using the current
raster color or index. Frame buffer pixels corresponding to zeros in the bitmap are not modified.

glBitmap takes seven arguments. The first pair specify the width and height of the bitmap image.
The second pair specify the location of the bitmap origin relative to the lower left corner of the
bitmap image. The third pair of arguments specify x and y offsets to be added to the current raster
position after the bitmap has been drawn. The final argument is a pointer to the bitmap image itself.

The bitmap image is interpreted like image data for the glDrawPixels command, with width and
height corresponding to the width and height arguments of that command, and with #pe set to
GL_BITMAP and format set to GL_COLOR_INDEX. Modes specified using glPixelStore affect
the interpretation of bitmap image data; modes specified using glPixelTransfer do not.

If the current raster position is invalid, giBitmap is ignored. Otherwise, the lower left corner of the
bitmap image is positioned at the window coordinates

szl_-xr _XGJ

Yw =LJ"r_.VnJ

where (xr, yr) is the raster position and (xo, yo) is the bitmap origin. Fragments are then
generated for each pixel corresponding to a one in the bitmap image. These fragments are generated
using the current raster z coordinate, color or color index, and current raster texture coordinates.
They are then treated just as if they had been generated by a point, line, or polygon, including
texture mapping, fogging, and all per-fragment operations such as alpha and depth testing.

After the bitmap has been drawn, the x and y coordinates of the current raster position are offset by

xmove and ymove. No change is made to the z coordinate of the current raster position, or to the
current raster color, index, or texture coordinates.

ERRORS

GL_INVALID_VALUE is generated if width or height is negative.
GL_INVALID_OPERATION is generated if gIBitmap is called between a call to glBegin and the
corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_CURRENT_RASTER_POSITION

glGet with argument GL_CURRENT_RASTER_COLOR
glGet with argument GL_CURRENT_RASTER_INDEX

S7

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glGet with argument GL_CURRENT RASTER_TEXTURE_COORDS
glGet with argument GL_CURRENT RASTER_POSITION_VALID

SEE ALSO

"glDrawPixels", "glRasterPos" , "glPixelStore" , "glPixelTransfer"

glBlendFunc

NAME

glBlendFunc - specify pixel arithmetic

C SPECIFICATION

void giBlendFunc(GLenum sfactor, GLenum dfactor)

PARAMETERS

sfactor

Specifies how the red, green, blue, and alpha source-blending factors are computed. Nine
symbolic constants are accepted: GL_ZERO, GL_ONE, GL_DST_COLOR,

GL_ONE_MINUS_DST _COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, GL_DST ALPHA,

GL_ONE_MINUS_DST_ALPHA, and GL_SRC_ALPHA_SATURATE.

dfactor

Specifies how the red, green, blue, and alpha destination blending factors are computed. Eight
symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_COLOR,

GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, GL_DST ALPHA, and
GL_ONE_MINUS_DST ALPHA.

DESCRIPTION

In RGB mode, pixels can be drawn using a function that blends the incoming (source) RGBA values
with the RGBA values that are already in the frame buffer (the destination values). By default,
blending is disabled. Use glEnable and glDisable with argument GL_BLEND to enable and

disable blending.

S8

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glBlendFunc defines the operation of blending when it is enabled. sfactor specifies which of nine
methods is used to scale the source color components. dfactor specifies which of eight methods is
used to scale the destination color components. The eleven possible methods are described in the
table below. Each method defines four scale factors, one each for red, green, blue, and alpha.

In the table and in subsequent equations, source and destination color components are referred to as

(Rs, Gs, Bs, As) and (Rd, Gd, Bd, Ad). They are understood to have integer values between zero
and (kR , kG, kB, kA), where

k.=2"_1

and (mR , mG, mB, mA) is the number of red, green, blue, and alpha bitplanes.

Source and destination scale factors are referred to as (sR , sG, sB, sA) and (dR, dG, dB, dA).
The scale factors described in the table, denoted (fR , fG, /B, fA), represent either source or
destination factors. All scale factors have range [0,1].

parameter IR, 1G,fB, fA)
GL_ZERO (0,0,0,0)

GL_ONE (1,1,1,1)

GL_SRC_COLOR (Rs/kR, Gs/kG, Bs/kB, As/kA)
GL_ONE_MINUS_SRC_COLOR (1,1,1,1)-(Rs/kR, Gs/ kG, Bs/ kB, As / kA)
GL_DST _COLOR (RA/kR, Gd/ kG, Bd/kB, Ad/kA)
GL_ONE_MINUS _DST COLOR (1,1,1,1)-(Rd/kR, Gd/kG, Bd/ kB, Ad/kA)
GL_SRC_ALPHA (As/ kA, As/ kA, As/ kA, As/ kA)
GL_ONE_MINUS_SRC_ALPHA (1,1,1,1)-(As/ kA, As/ kA , As / kA , As / kA)
GL_DST_ALPHA (Ad/ kA, Ad/ kA, Ad/ kA, Ad/ kA)
GL_ONE_MINUS DST_ALPHA (1,1,1,1)-(Ad/ kA, Ad/ kA, Ad/ kA , Ad/kA)
GL_SRC_ALPHA SATURATE (G i,4,1)

In the table,

i =min (4s, kA - Ad) / kA

To determine the blended RGBA values of a pixel when drawing in RGB mode, the system uses the
following equations:

Rd = min (kR , Rs sR + Rd dR)
Gd = min (kG, Gs sG + Gd dG)
Bd =min (kB, Bs sB + Bd dB)
Ad = min (kA , As sA + Ad dA)

Despite the apparent precision of the above equations, blending arithmetic is not exactly specified,
because blending operates with imprecise integer color values. However, a blend factor that should
be equal to one is guaranteed not to modify its multiplicand, and a blend factor equal to zero reduces
its multiplicand to zero. Thus, for example, when sfactor is GL_SRC_ALPHA, dfactor is
GL_ONE_MINUS_SRC_ALPHA, and 4s is equal to kA, the equations reduce to simple
replacement:

Rd = Rs
Gd = Gs

59

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Bd = Bs
Ad = A4s
EXAMPLES

Transparency is best implemented using blend function (GL_SRC_ALPHA,
GL_ONE_MINUS SRC ALPHA) with primitives sorted from farthest to nearest. Note that this
transparency calculation does not require the presence of alpha bitplanes in the frame buffer.

Blend function (GL_SRC_ALPHA, GL_ONE_MINUS _SRC_ALPHA) is also useful for
rendering antialiased points and lines in arbitrary order.

Polygon antialiasing is optimized using blend function (GL_SRC_ALPHA SATURATE,
GL_ONE) with polygons sorted from nearest to farthest. (See the "glEnable" , glDisable reference
page and the GL_ POLYGON_SMOOTH argument for information on polygon antialiasing.)

Destination alpha bitplanes, which must be present for this blend function to operate correctly, store
the accumulated coverage.

NOTES

Incoming (source) alpha is correctly thought of as a material opacity, ranging from 1.0 (KA),
representing complete opacity, to 0.0 (0), representing completely transparency.

When more than one color buffer is enabled for drawing, blending is done separately for each
enabled buffer, using for destination color the contents of that buffer. (See "glDrawBuffer" .)

Blending affects only RGB rendering. It is ignored by color index renderers.

ERRORS
GL_INVALID ENUM is generated if either sfactor or dfactor is not an accepted value.

GL_INVALID OPERATION is generated if giIBlendFunc is called between a call to glBegin and
the corresponding call to glEnd.

ASSOCIATED GETS
glGet with argument GL_ BLEND_ SRC

glGet with argument GL_ BLEND_DST
glIsEnabled with argument GL_ BLEND

SEE ALSO

"glAlphaFunc", "glClear" , "glDrawBuffer" , "glEnable" , "glLogicOp" , "glStencilFunc"

60

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glCallList

NAME

glCallList - execute a display list

C SPECIFICATION

void glCallList(GLuint /ist)

PARAMETERS
list

Specifies the integer name of the display list to be executed.

DESCRIPTION

glCallList causes the named display list to be executed. The commands saved in the display list are
executed in order, just as if they were called without using a display list. If /ist has not been defined
as a display list, glCallList is ignored.

glCallList can appear inside a display list. To avoid the possibility of infinite recursion resulting
from display lists calling one another, a limit is placed on the nesting level of display lists can
appear inside a display list. To avoid the possibility of infinite recursion resulting from display lists
calling one another, a limit is placed on the nesting level of display lists during display-list
execution. This limit is at least 64, and it depends on the implementation.

GL state is not saved and restored across a call to glCallList. Thus, changes made to GL state
during the execution of a display list remain after execution of the display list is completed. Use

glPushAttrib, glPopAttrib, glPushMatrix, and glPopMatrix to preserve GL state across
glCallList calls.

NOTES

Display lists can be executed between a call to glBegin and the corresponding call to glEnd, as long
as the display list includes only commands that are allowed in this interval.

ASSOCIATED GETS

glGet with argument GL_MAX_ LIST NESTING
gllsList

61

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

"glCallLists", "glDeleteLists" , "glGenLists" , "gINewList" , "glPushAttrib" , "glPushMatrix"

glCallLists

NAME

glCallLists - execute a list of display lists

C SPECIFICATION

void glCallLists(GLsizei n, GLenum type, const GLvoid */ists)

PARAMETERS

Specifies the number of display lists to be executed.

type
Specifies the type of values in /ists. Symbolic constants GL. BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, GL_2 BYTES, GL_3 BYTES, and GL_4 BYTES
are accepted.

lists
Specifies the address of an array of name offsets in the display list. The pointer type is void
because the offsets can be bytes, shorts, ints, or floats, depending on the value of #ype.

DESCRIPTION

glCallLists causes each display list in the list of names passed as /ists to be executed. As a result,
the commands saved in each display list are executed in order, just as if they were called without
using a display list. Names of display lists that have not been defined are ignored.

glCallLists provides an efficient means for executing display lists. # allows lists with various name
formats to be accepted. The formats are as follows:

GL_BYTE

62

OpenGL Reference Manual (Addison-Wesley Publishing Company)

lists is treated as an array of signed bytes, each in the range -128 through 127.
GL_UNSIGNED_BYTE

lists is treated as an array of unsigned bytes, each in the range 0 through 255.
GL_SHORT

lists is treated as an array of signed two-byte integers, each in the range -32768 through
32767.

GL_UNSIGNED_SHORT
lists is treated as an array of unsigned two-byte integers, each in the range 0 through 65535.
GL_INT
lists is treated as an array of signed four-byte integers.
GL_UNSIGNED _INT
lists is treated as an array of unsigned four-byte integers.
GL_FLOAT
lists is treated as an array of four-byte floating-point values.
GL_2 BYTES
lists is treated as an array of unsigned bytes. Each pair of bytes specifies a single display-list
name. The value of the pair is computed as 256 times the unsigned value of the first byte plus
the unsigned value of the second byte.
GL_3 BYTES
lists is treated as an array of unsigned bytes. Each triplet of bytes specifies a single display-list

name. The value of the triplet is computed as 65536 times the unsigned value of the first byte,
plus 256 times the unsigned value of the second byte, plus the unsigned value of the third

byte.

GL_4 BYTES
lists is treated as an array of unsigned bytes. Each quadruplet of bytes specifies a single
display-list name. The value of the quadruplet is computed as 16777216 times the unsigned
value of the first byte, plus 65536 times the unsigned value of the second byte, plus 256 times
the unsigned value of the third byte, plus the unsigned value of the fourth byte.

The list of display list names is not null-terminated. Rather, n specifies how many names are to be
taken from /ists.

63

OpenGL Reference Manual (Addison-Wesley Publishing Company)

An additional level of indirection is made available with the glListBase command, which specifies
an unsigned offset that is added to each display-list name specified in /ists before that display list is
executed.

glCallLists can appear inside a display list. To avoid the possibility of infinite recursion resulting
from display lists calling one another, a limit is placed on the nesting level of display lists during
display-list execution. This limit must be at least 64, and it depends on the implementation.

GL state is not saved and restored across a call to glCallLists. Thus, changes made to GL state

during the execution of the display lists remain after execution is completed. Use glPushAttrib,
glPopAttrib, glPushMatrix, and glPopMatrix to preserve GL state across glCallLists calls.

NOTES

Display lists can be executed between a call to glBegin and the corresponding call to glEnd, as long
as the display list includes only commands that are allowed in this interval.

ASSOCIATED GETS

glGet with argument GL_LIST_BASE

glGet with argument GL_ MAX LIST NESTING
gllsList

SEE ALSO

"glCallList", "glDeleteLists" , "glGenLists" , "glListBase" , "gINewList" , "glPushAttrib" ,
"g]PushMatrix"

glClear

NAME

glClear - clear buffers within the viewport

C SPECIFICATION

void glClear(GLbitfield mask)

PARAMETERS

mask

64

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Bitwise OR of masks that indicate the buffers to be cleared. The four masks are
GL_COLOR _BUFFER BIT, GL_DEPTH BUFFER BIT,
GL_ACCUM_BUFFER BIT, and GL_STENCIL_ BUFFER BIT.

DESCRIPTION

glClear sets the bitplane area of the window to values previously selected by glClearColor,
glClearIndex, glClearDepth, glClearStencil, and glClearAccum. Multiple color buffers can be
cleared simultaneously by selecting more than one buffer at a time using giDrawBuffer.

The pixel ownership test, the scissor test, dithering, and the buffer writemasks affect the operation
of glClear. The scissor box bounds the cleared region. Alpha function, blend function, logical
operation, stenciling, texture mapping, and z-buffering are ignored by glClear.

glClear takes a single argument that is the bitwise OR of several values indicating which buffer is
to be cleared.

The values are as follows:
GL_COLOR_BUFFER BIT

Indicates the buffers currently enabled for color writing.
GL_DEPTH_BUFFER_BIT

Indicates the depth buffer.
GL_ACCUM_BUFFER_BIT

Indicates the accumulation buffer.
GL_STENCIL_BUFFER BIT

Indicates the stencil buffer.

The value to which each buffer is cleared depends on the setting of the clear value for that buffer.

NOTES

If a buffer is not present, then a glClear directed at that buffer has no effect.

ERRORS

GL_INVALID VALUE is generated if any bit other than the four defined bits is set in mask.

65

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_INVALID OPERATION is generated if glClear is called between a call to glBegin and the
corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ ACCUM_CLEAR VALUE
glGet with argument GL_ DEPTH _CLEAR_VALUE
glGet with argument GL_INDEX CLEAR VALUE
glGet with argument GL_COLOR_CLEAR VALUE
glGet with argument GL_STENCIL_CLEAR_VALUE

SEE ALSO

"glClearAccum", "glClearColor" , "glClearDepth" , "glClearIndex" , "glClearStencil" ,
"g]|DrawBuffer" , "glScissor"

glClearAccum

NAME

glClearAccum - specify clear values for the accumulation buffer

C SPECIFICATION

void glClearAccum(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha)

PARAMETERS

red, green, blue, alpha

Specify the red, green, blue, and alpha values used when the accumulation buffer is cleared.
The default values are all zero.

DESCRIPTION

glClearAccum specifies the red, green, blue, and alpha values used by glClear to clear the
accumulation buffer.

Values specified by glClearAccum are clamped to the range [-1,1].

66

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS

GL_INVALID OPERATION is generated if glClearAccum is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ ACCUM_CLEAR VALUE

SEE ALSO

"glClear"

glClearColor

NAME

glClearColor - specify clear values for the color buffers

C SPECIFICATION

void glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)

PARAMETERS

red, green, blue, alpha

Specify the red, green, blue, and alpha values used when the color buffers are cleared. The
default values are all zero.

DESCRIPTION

glClearColor specifies the red, green, blue, and alpha values used by glClear to clear the color
buffers. Values specified by glClearColor are clamped to the range [0,1].

ERRORS

GL_INVALID_OPERATION is generated if glClearColor is called between a call to gIBegin
and the corresponding call to glEnd.

67

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS

glGet with argument GL_COLOR_CLEAR VALUE

SEE ALSO

"glClear"

glClearDepth

NAME

glClearDepth - specify the clear value for the depth buffer

C SPECIFICATION

void glClearDepth(GLclampd depth)

PARAMETERS
depth

Specifies the depth value used when the depth buffer is cleared.

DESCRIPTION

glClearDepth specifies the depth value used by glClear to clear the depth buffer. Values specified
by glClearDepth are clamped to the range [0,1].

ERRORS

GL_INVALID_OPERATION is generated if glClearDepth is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_DEPTH_CLEAR_VALUE

68

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

"glClear"

glClearIndex

NAME

glClearIndex - specify the clear value for the color index buffers

C SPECIFICATION

void glClearIndex(GLfloat ¢)

PARAMETERS

Specifies the index used when the color index buffers are cleared. The default value is zero.

DESCRIPTION
glClearIndex specifies the index used by glClear to clear the color index buffers. ¢ is not clamped.
Rather, c is converted to a fixed-point value with unspecified precision to the right of the binary

point. The integer part of this value is then masked with 2m -1, where m is the number of bits in a
color index stored in the frame buffer.

ERRORS

GL_INVALID_OPERATION is generated if glClearIndex is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_INDEX CLEAR_VALUE
glGet with argument GL_INDEX_ BITS

SEE ALSO

"glClear"

69

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glClearStencil

NAME

glClearStencil - specify the clear value for the stencil buffer

C SPECIFICATION

void glClearStencil(GLint s)

PARAMETERS

Specifies the index used when the stencil buffer is cleared. The default value is zero.

DESCRIPTION

glClearStencil specifies the index used by glClear to clear the stencil buffer. s is masked with 2m -
1, where m is the number of bits in the stencil buffer.

ERRORS

GL_INVALID_OPERATION is generated if glClearStencil is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_STENCIL_CLEAR_VALUE
glGet with argument GL_STENCIL_BITS

SEE ALSO

"glClear"

70

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glClipPlane

NAME

glClipPlane - specify a plane against which all geometry is clipped

C SPECIFICATION

void glClipPlane(GLenum plane, const GLdouble *equation)

PARAMETERS

plane

Specifies which clipping plane is being positioned. Symbolic names of the form
GL_CLIP_PLANE;, where i is an integer between 0 and GL_MAX CLIP_PLANES -1, are
accepted.

equation

Specifies the address of an array of four double-precision floating-point values. These values
are interpreted as a plane equation.

DESCRIPTION

Geometry is always clipped against the boundaries of a six-plane frustum in x, y, and z. glClipPlane
allows the specification of additional planes, not necessarily perpendicular to the x, y, or z axis,
against which all geometry is clipped. Up to GL_MAX CLIP_PLANES planes can be specified,
where GL_MAX CLIP_PLANES is at least six in all implementations. Because the resulting
clipping region is the intersection of the defined half-spaces, it is always convex.

glClipPlane specifies a half-space using a four-component plane equation. When glClipPlane is
called, equation is transformed by the inverse of the modelview matrix and stored in the resulting
eye coordinates. Subsequent changes to the modelview matrix have no effect on the stored plane-
equation components. If the dot product of the eye coordinates of a vertex with the stored plane
equation components is positive or zero, the vertex is in with respect to that clipping plane.
Otherwise, it is out.

Clipping planes are enabled and disabled with glEnable and glDisable, and called with the
argument GL_ CLIP_PLANE:, where i is the plane number.

By default, all clipping planes are defined as (0,0,0,0) in eye coordinates and are disabled.

71

OpenGL Reference Manual (Addison-Wesley Publishing Company)

NOTES

It is always the case that GL_CLIP_PLANE: = GL_CLIP_PLANEO0 + .

ERRORS
GL_INVALID ENUM is generated if plane is not an accepted value.

GL_INVALID OPERATION is generated if glClipPlane is called between a call to giBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glGetClipPlane
glIsEnabled with argument GL_CLIP_PLANE;:

SEE ALSO

"glEnable"

glColor

NAME

glColor3b, glColor3d, glColor3f, glColor3i, glColor3s, gilColor3ub, glColor3ui, glColor3us,
glColor4b, glColor4d, glColor4f, glColor4i, glColor4s, glColor4ub, glColor4ui, glColor4us,
glColor3byv, glColor3dv, glColor3fv, glColor3iv, glColor3sv, glColor3ubv, glColor3uiyv,
glColor3usv, glColor4bv, glColor4dv, glColor4fv, glColor4iv, glColor4sv, glColor4ubyv,
glColor4uiv, glColor4usyv - set the current color

C SPECIFICATION

void glColor3b(GLbyte red, GLbyte green, GLbyte blue)

void glColor3d(GLdouble red, GLdouble green, GLdouble blue)

void glColor3f(GLfloat red, GLfloat green, GLfloat blue)

void glColor3i(GLint red, GLint green, GLint blue)

void glColor3s(GLshort red, GLshort green, GLshort blue)

void glColor3ub(GLubyte red, GLubyte green, GLubyte blue)

void glColor3ui(GLuint red, GLuint green, GLuint blue)

void glColor3us(GLushort red, GLushort green, GLushort blue)

void glColor4b(GLbyte red, GLbyte green, GLbyte blue, GLbyte alpha)

void glColor4d(GLdouble red, GLdouble green, GLdouble blue, GLdouble alpha)

72

OpenGL Reference Manual (Addison-Wesley Publishing Company)

void glColor4f(GLfloat red, GLfloat green, GLfloat hlue, GLfloat alpha)

void glColor4i(GLint red, GLint green, GLint blue, GLint alpha)

void glColor4s(GLshort red, GLshort green, GLshort blue, GLshort alpha)

void glColor4ub(GLubyte red, GLubyte green, GLubyte blue, GLubyte alpha)
void glColor4ui(GLuint red, GLuint green, GLuint blue, GLuint alpha)

void glColor4us(GLushort red, GLushort green, GLushort blue, GLushort alpha)

PARAMETERS

red, green, blue
Specify new red, green, and blue values for the current color.
alpha

Specifies a new alpha value for the current color. Included only in the four-argument glColor4
command.

C SPECIFICATION

void glColor3bv(const GLbyte *v)
void glColor3dv(const GLdouble *v)
void glColor3fv(const GLfloat *v)
void glColor3iv(const GLint *v)

void glColor3sv(const GLshort *v)
void glColor3ubv(const GLubyte *v)
void glColor3uiv(const GLuint *v)
void glColor3usv(const GLushort *v)
void glColor4bv(const GLbyte *v)
void glColor4dv(const GLdouble *v)
void glColor4fv(const GLfloat *v)
void glColor4iv(const GLint *v)

void glColor4sv(const GLshort *v)
void glColor4ubv(const GLubyte *v)
void glColor4uiv(const GLuint *v)
void glColor4usv(const GLushort *v)

PARAMETERS

Specifies a pointer to an array that contains red, green, blue, and (sometimes) alpha values.

73

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

The GL stores both a current single-valued color index and a current four-valued RGBA color.
glColor sets a new four-valued RGBA color. glColor has two major variants: glColor3 and
glColor4. glColor3 variants specify new red, green, and blue values explicitly, and set the current
alpha value to 1.0 implicitly. glColor4 variants specify all four color components explicitly.

glColor3b, glColor4b, glColor3s, glColor4s, glColor3i, and glColor4i take three or four unsigned
byte, short, or long integers as arguments. When v is appended to the name, the color commands
can take a pointer to an array of such values.

Current color values are stored in floating-point format, with unspecified mantissa and exponent
sizes. Unsigned integer color components, when specified, are linearly mapped to floating-point
values such that the largest representable value maps to 1.0 (full intensity), and zero maps to 0.0
(zero intensity). Signed integer color components, when specified, are linearly mapped to floating-
point values such that the most positive representable value maps to 1.0, and the most negative
representable value maps to -1.0. Floating-point values are mapped directly.

Neither floating-point nor signed integer values are clamped to the range [0,1] before updating the

current color. However, color components are clamped to this range before they are interpolated or
written into a color buffer.

NOTES

The current color can be updated at any time. In particular, glColor can be called between a call to
glBegin and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ CURRENT_COLOR
glGet with argument GL_ RGBA_ MODE

SEE ALSO

"glIndex"

glColorMask

NAME

glColorMask - enable and disable writing of frame buffer color components

74

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

void glColorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha)

PARAMETERS

red, green, blue, alpha

Specity whether red, green, blue, and alpha can or cannot be written into the frame buffer. The
default values are all GL_TRUE, indicating that the color components can be written.

DESCRIPTION
glColorMask specifies whether the individual color components in the frame buffer can or cannot
be written. If red is GL._FALSE, for example, no change is made to the red component of any pixel

in any of the color buffers, regardless of the drawing operation attempted.

Changes to individual bits of components cannot be controlled. Rather, changes are either enabled
or disabled for entire color components.

ERRORS

GL_INVALID OPERATION is generated if glColorMask is called between a call to gIBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_COLOR_WRITEMASK
glGet with argument GL_ RGBA_ MODE

SEE ALSO

"glColor", "glIndex" , "glindexMask" , "glDepthMask" , "glStencilMask"

glColorMaterial

NAME

glColorMaterial - cause a material color to track the current color

75

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

void glColorMaterial(GLenum face, GLenum mode)

PARAMETERS

face

Specifies whether front, back, or both front and back material parameters should track the
current color. Accepted values are GL_FRONT, GL_BACK, and
GL_FRONT_AND_BACK. The default value is GL_FRONT_AND_ BACK.

mode
Specifies which of several material parameters track the current color. Accepted values are

GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, and
GL_AMBIENT_AND_DIFFUSE. The default value is GL_AMBIENT_AND_ DIFFUSE.

DESCRIPTION

glColorMaterial specifies which material parameters track the current color. When
GL_COLOR_MATERIAL is enabled, the material parameter or parameters specified by mode, of
the material or materials specified by face, track the current color at all times.
GL_COLOR_MATERIAL is enabled and disabled using the commands glEnable and glDisable,
called with GL_COLOR_MATERIAL as their argument. By default, it is disabled.

NOTES

glColorMaterial allows a subset of material parameters to be changed for each vertex using only

the glColor command, without calling glMaterial. If only such a subset of parameters is to be
specified for each vertex, glColorMaterial is preferred over calling glMaterial.

ERRORS
GL_INVALID ENUM is generated if face or mode is not an accepted value.

GL_INVALID OPERATION is generated if glColorMaterial is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS
glIsEnabled with argument GL_COLOR_MATERIAL

glGet with argument GL_COLOR_MATERIAL PARAMETER
glGet with argument GL_COLOR_MATERIAL_FACE

76

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

"glColor", "glEnable" , "glLight" , "glLightModel" , "glMaterial"

glCopyPixels

NAME

glCopyPixels - copy pixels in the frame buffer

C SPECIFICATION

void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum type)

PARAMETERS

X,y

Specify the window coordinates of the lower left corner of the rectangular region of pixels to
be copied.

width, height

Specify the dimensions of the rectangular region of pixels to be copied. Both must be
nonnegative.

type

Specifies whether color values, depth values, or stencil values are to be copied. Symbolic
constants GL_COLOR, GL_DEPTH, and GL_STENCIL are accepted.

DESCRIPTION

glCopyPixels copies a screen-aligned rectangle of pixels from the specified frame buffer location to
a region relative to the current raster position. Its operation is well defined only if the entire pixel
source region is within the exposed portion of the window. Results of copies from outside the
window, or from regions of the window that are not exposed, are hardware dependent and
undefined.

x and y specify the window coordinates of the lower left corner of the rectangular region to be

copied. width and height specify the dimensions of the rectangular region to be copied. Both width
and height must not be negative.

77

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Several parameters control the processing of the pixel data while it is being copied. These
parameters are set with three commands: glPixelTransfer, glPixelMap, and glPixelZoom. This
reference page describes the effects on glCopyPixels of most, but not all, of the parameters
specified by these three commands.

glCopyPixels copies values from each pixel with the lower left-hand corner at (x + i, y +) for 0
≤ i<width and 0 ≤ j<height. This pixel is said to be the ith pixel in the jth row. Pixels are
copied in row order from the lowest to the highest row, left to right in each row.

type specifies whether color, depth, or stencil data is to be copied. The details of the transfer for
each data type are as follows:

GL_COLOR

Indices or RGBA colors are read from the buffer currently specified as the read source buffer
(see "glReadBuffer" .) If the GL is in color index mode, each index that is read from this
buffer is converted to a fixed-point format with an unspecified number of bits to the right of
the binary point. Each index is then shifted left by GL_INDEX SHIFT bits, and added to
GL_INDEX OFFSET. If GL_INDEX SHIFT is negative, the shift is to the right. In either
case, zero bits fill otherwise unspecified bit locations in the result. [f GL_MAP_COLOR is
true, the index is replaced with the value that it references in lookup table

GL_PIXEL _MAP_I TO 1. Whether the lookup replacement of the index is done or not, the
integer part of the index is then ANDed with 2b -1, where b is the number of bits in a color
index buffer.

If the GL is in RGBA mode, the red, green, blue, and alpha components of each pixel that is
read are converted to an internal floating-point format with unspecified precision. The
conversion maps the largest representable component value to 1.0, and component value zero
to 0.0. The resulting floating-point color values are then multiplied by GL_¢_ SCALE and
added to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the respective
color components. The results are clamped to the range [0,1]. If GL_MAP_COLOR is true,
each color component is scaled by the size of lookup table GL_PIXEL_MAP ¢ TO c, then
replaced by the value that it references in that table. c is R, G, B, or A, respectively.

The resulting indices or RGBA colors are then converted to fragments by attaching the current
raster position z coordinate and texture coordinates to each pixel, then assigning window
coordinates (xr + i, yr +j), where (xr, yr) is the current raster position, and the pixel was the
ith pth pixel in the jth row. These pixel fragments are then treated just like the fragments
generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment
operations are applied before the fragments are written to the frame buffer.

GL_DEPTH

78

Depth values are read from the depth buffer and converted directly to an internal floating-
point format with unspecified precision. The resulting floating-point depth value is then
multiplied by GL_ DEPTH_SCALE and added to GL_ DEPTH_BIAS. The result is clamped
to the range [0,1].

OpenGL Reference Manual (Addison-Wesley Publishing Company)

The resulting depth components are then converted to fragments by attaching the current
raster position color or color index and texture coordinates to each pixel, then assigning
window coordinates (xr + i, yr + j), where (xr, yr) is the current raster position, and the pixel
was the ith pixel in the jth row. These pixel fragments are then treated just like the fragments
generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment
operations are applied before the fragments are written to the frame buffer.

GL_STENCIL

Stencil indices are read from the stencil buffer and converted to an internal fixed-point format
with an unspecified number of bits to the right of the binary point. Each fixed-point index is
then shifted left by GL_INDEX SHIFT bits, and added to GL_INDEX OFFSET. If
GL_INDEX SHIFT is negative, the shift is to the right. In either case, zero bits fill otherwise
unspecified bit locations in the result. If GL_MAP_STENCIL is true, the index is replaced
with the value that it references in lookup table GL_ PIXEL_MAP_S TO_S. Whether the
lookup replacement of the index is done or not, the integer part of the index is then ANDed
with 2b -1, where b is the number of bits in the stencil buffer. The resulting stencil indices are
then written to the stencil buffer such that the index read from the ith location of the jth row is
written to location (xr + i, yr + j), where (xr, yr) is the current raster position. Only the pixel
ownership test, the scissor test, and the stencil writemask affect these writes.

The rasterization described thus far assumes pixel zoom factors of 1.0. If glPixelZoom is used to
change the x and y pixel zoom factors, pixels are converted to fragments as follows. If (xr, yr) is the
current raster position, and a given pixel is in the ith location in the jth row of the source pixel
rectangle, then fragments are generated for pixels whose centers are in the rectangle with corners at
(xr + zoomx i, yr + zoomy j)

and

(xr + zoomx (i + 1), yr + zoomy (j + 1))

where zoomx is the value of GL_ZOOM _X and zoomy is the value of GL_ZOOM Y.

EXAMPLES

To copy the color pixel in the lower left corner of the window to the current raster position, use

glCopyPixels (0, 0, 1, 1, GL COLOR) ;

NOTES

Modes specified by glPixelStore have no effect on the operation of glCopyPixels.

79

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS

GL_INVALID ENUM is generated if #ype is not an accepted value.

GL_INVALID VALUE is generated if either width or height is negative.

GL_INVALID OPERATION is generated if #ype is GL_ DEPTH and there is no depth buffer.
GL_INVALID OPERATION is generated if #ype is GL_STENCIL and there is no stencil buffer.
GL_INVALID OPERATION is generated if glCopyPixels is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_CURRENT_RASTER POSITION

glGet with argument GL_CURRENT RASTER_POSITION_VALID

SEE ALSO

" n

"glDepthFunc", "glDrawBuffer" , "glDrawPixels" , "glPixelMap" , "glPixel Transfer" ,
"glPixelZoom" , "glRasterPos" , "glReadBuffer" , "glReadPixels" , "glStencilFunc"

glCullFace

NAME

glCullFace - specify whether front- or back-facing facets can be culled

C SPECIFICATION

void glCullFace(GLenum mode)

PARAMETERS

mode

Specifies whether front- or back-facing facets are candidates for culling. Symbolic constants
GL_FRONT and GL_BACK are accepted. The default value is GL_BACK.

80

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

glCullFace specifies whether front- or back-facing facets are culled (as specified by mode) when
facet culling is enabled. Facet culling is enabled and disabled using the glEnable and glDisable
commands with the argument G CULL_FACE. Facets include triangles, quadrilaterals,

polygons, and rectangles.

glFrontFace specifies which of the clockwise and counterclockwise facets are front-facing and
back-facing. See "glFrontFace" .

ERRORS
GL_INVALID ENUM is generated if mode is not an accepted value.

GL_INVALID OPERATION is generated if glCullFace is called between a call to glBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glIsEnabled with argument GL_CULL_FACE
glGet with argument GL_CULL_FACE_MODE

SEE ALSO

"glEnable", "glFrontFace"

glDeleteLists

NAME

glDeleteLists - delete a contiguous group of display lists

C SPECIFICATION

void glDeleteLists(GLuint /ist, GLsizei range)

PARAMETERS
list

Specifies the integer name of the first display list to delete.

81

OpenGL Reference Manual (Addison-Wesley Publishing Company)

range

Specifies the number of display lists to delete.

DESCRIPTION

glDeleteLists causes a contiguous group of display lists to be deleted. /ist is the name of the first
display list to be deleted, and range is the number of display lists to delete. All display lists d with
list ≤ d ≤ list + range - 1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names are available for

reuse at a later time. Names within the range that do not have an associated display list are ignored.
If range is zero, nothing happens.

ERRORS
GL_INVALID VALUE is generated if range is negative.

GL_INVALID OPERATION is generated if glDeleteLists is called between a call to giBegin and
the corresponding call to glEnd.

SEE ALSO

"glCallList", "glCallLists" , "glGenLists" , "gllsList" , "gINewList"

glDepthFunc

NAME

glDepthFunc - specify the value used for depth buffer comparisons

C SPECIFICATION

void glDepthFunc(GLenum func)

PARAMETERS
func

Specifies the depth comparison function. Symbolic constants GL_NEVER, GL_LESS,

82

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and
GL_ALWAYS are accepted. The default value is GL._LESS.

DESCRIPTION

glDepthFunc specifies the function used to compare each incoming pixel z value with the z value
present in the depth buffer. The comparison is performed only if depth testing is enabled. (See
"glEnable" and glDisable of GL_DEPTH_TEST.)

func specifies the conditions under which the pixel will be drawn. The comparison functions are as
follows:

GL_NEVER

Never passes.
GL_LESS

Passes if the incoming z value is less than the stored z value.
GL_EQUAL

Passes if the incoming z value is equal to the stored z value.
GL_LEQUAL

Passes if the incoming z value is less than or equal to the stored z value.
GL_GREATER

Passes if the incoming z value is greater than the stored z value.
GL_NOTEQUAL

Passes if the incoming z value is not equal to the stored z value.
GL_GEQUAL

Passes if the incoming z value is greater than or equal to the stored z value.
GL_ALWAYS

Always passes.

The default value of func is GL_LESS. Initially, depth testing is disabled.

83

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS
GL_INVALID ENUM is generated if func is not an accepted value.

GL_INVALID OPERATION is generated if glDepthFunc is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ DEPTH_FUNC
glIsEnabled with argument GL_DEPTH_TEST

SEE ALSO

"g]lDepthRange", "glEnable"

glDepthMask

NAME

glDepthMask - enable or disable writing into the depth buffer

C SPECIFICATION

void glDepthMask(GLboolean flag)

PARAMETERS

flag

Specifies whether the depth buffer is enabled for writing. If flag is zero, depth buffer writing
is disabled. Otherwise, it is enabled. Initially, depth buffer writing is enabled.

DESCRIPTION

glDepthMask specifies whether the depth buffer is enabled for writing. If flag is zero, depth buffer
writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing is enabled.

84

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS

GL_INVALID OPERATION is generated if glDepthMask is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ DEPTH_WRITEMASK

SEE ALSO

"glColorMask", "glDepthFunc" , "glDepthRange" , "glindexMask" , "glStencilMask"

glDepthRange

NAME

glDepthRange - specify the mapping of z values from normalized device coordinates to window
coordinates

C SPECIFICATION

void glDepthRange(GLclampd near, GLclampd far)

PARAMETERS

near

Specifies the mapping of the near clipping plane to window coordinates. The default value is

0.
far

Specifies the mapping of the far clipping plane to window coordinates. The default value is 1.
DESCRIPTION

After clipping and division by w, z coordinates range from -1.0 to 1.0, corresponding to the near and
far clipping planes. glDepthRange specifies a linear mapping of the normalized z coordinates in
this range to window z coordinates. Regardless of the actual depth buffer implementation, window
coordinate depth values are treated as though they range from 0.0 through 1.0 (like color

85

OpenGL Reference Manual (Addison-Wesley Publishing Company)

components). Thus, the values accepted by glDepthRange are both clamped to this range before
they are accepted.

The default mapping of 0,1 maps the near plane to 0 and the far plane to 1. With this mapping, the
depth buffer range is fully utilized.

NOTES

It is not necessary that near be less than far. Reverse mappings such as 1,0 are acceptable.

ERRORS

GL_INVALID OPERATION is generated if glDepthRange is called between a call to giBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ DEPTH_RANGE

SEE ALSO

"g]lDepthFunc", "glViewport"

glDrawBuffer

NAME

glDrawBuffer - specify which color buffers are to be drawn into

C SPECIFICATION

void glDrawBuffer(GLenum mode)

PARAMETERS

mode
Specifies up to four color buffers to be drawn into. Symbolic constants GL_NONE,

GL_FRONT_LEFT, GL_FRONT RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT,
GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, GL_FRONT_AND BACK, and

36

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_AUXi, where i is between 0 and GL_AUX_ BUFFERS -1, are accepted

(GL_AUX BUFFERS is not the upper limit; use glGet to query the number of available aux
buffers.) The default value is GL_FRONT for single-buffered contexts, and GL._ BACK for
double-buffered contexts.

DESCRIPTION

When colors are written to the frame buffer, they are written into the color buffers specified by
glDrawBuffer. The specifications are as follows:

GL_NONE

No color buffers are written.
GL_FRONT_LEFT

Only the front left color buffer is written.
GL_FRONT_RIGHT

Only the front right color buffer is written.
GL_BACK_LEFT

Only the back left color buffer is written.
GL_BACK _RIGHT

Only the back right color buffer is written.
GL_FRONT

Only the front left and front right color buffers are written. If there is no front right color
buffer, only the front left color buffer is written.

GL_BACK

Only the back left and back right color buffers are written. If there is no back right color
buffer, only the back left color buffer is written.

GL_LEFT

Only the front left and back left color buffers are written. If there is no back left color buffer,
only the front left color buffer is written.

GL_RIGHT

Only the front right and back right color buffers are written. If there is no back right color

87

OpenGL Reference Manual (Addison-Wesley Publishing Company)

buffer, only the front right color buffer is written.
GL_FRONT_AND BACK
All the front and back color buffers (front left, front right, back left, back right) are written. If
there are no back color buffers, only the front left and front right color buffers are written. If
there are no right color buffers, only the front left and back left color buffers are written. If
there are no right or back color buffers, only the front left color buffer is written.
GL_AUXi
Only auxiliary color buffer i is written.
If more than one color buffer is selected for drawing, then blending or logical operations are
computed and applied independently for each color buffer and can produce different results in each
buffer.
Monoscopic contexts include only /eft buffers, and stereoscopic contexts include both left and right

buffers. Likewise, single-buffered contexts include only front buffers, and double-buffered contexts
include both front and back buffers. The context is selected at GL initialization.

NOTES

It is always the case that GL_AUXi = GL_AUXO0 + .

ERRORS
GL_INVALID ENUM is generated if mode is not an accepted value.
GL_INVALID OPERATION is generated if none of the buffers indicated by mode exists.

GL_INVALID OPERATION is generated if gIDrawBuffer is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ DRAW_BUFFER
glGet with argument GL_AUX BUFFERS

SEE ALSO

"glBlendFunc", "glColorMask" , "glindexMask" , "glLogicOp" , glReadSource

88

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glDrawPixels

NAME

glDrawPixels - write a block of pixels to the frame buffer

C SPECIFICATION
void glDrawPixels(GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid
*pixels)
PARAMETERS
width, height
Specity the dimensions of the pixel rectangle that will be written into the frame buffer.
format
Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX,
GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RGBA, GL_RED,

GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA are accepted.

ype

Specifies the data type for pixels. Symbolic constants GL._UNSIGNED BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, and GL_FLOAT are accepted.

pixels

Specifies a pointer to the pixel data.

DESCRIPTION

glDrawPixels reads pixel data from memory and writes it into the frame buffer relative to the
current raster position. Use glRasterPos to set the current raster position, and use glGet with
argument GL_CURRENT_RASTER POSITION to query the raster position.

Several parameters define the encoding of pixel data in memory and control the processing of the
pixel data before it is placed in the frame buffer. These parameters are set with four commands:
glPixelStore, glPixelTransfer, glPixelMap, and glPixelZoom. This reference page describes the
effects on glDrawPixels of many, but not all, of the parameters specified by these four commands.

39

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Data is read from pixels as a sequence of signed or unsigned bytes, signed or unsigned shorts, signed
or unsigned integers, or single-precision floating-point values, depending on #ype. Each of these
bytes, shorts, integers, or floating-point values is interpreted as one color or depth component, or
one index, depending on format. Indices are always treated individually. Color components are
treated as groups of one, two, three, or four values, again based on format. Both individual indices
and groups of components are referred to as pixels. If fype is GL_BITMAP, the data must be
unsigned bytes, and format must be either GL_COLOR_INDEX or GL_ STENCIL_INDEX. Each
unsigned byte is treated as eight 1-bit pixels, with bit ordering determined by

GL_UNPACK _LSB_FIRST (see "glPixelStore" .)

widthxheight pixels are read from memory, starting at location pixels. By default, these pixels are
taken from adjacent memory locations, except that after all width pixels are read, the read pointer is
advanced to the next four-byte boundary. The four-byte row alignment is specified by glPixelStore
with argument GL_UNPACK ALIGNMENT, and it can be set to one, two, four, or eight bytes.
Other pixel store parameters specify different read pointer advancements, both before the first pixel
is read, and after all width pixels are read. Refer to the glPixelStore reference page for details on
these options.

The widthxheight pixels that are read from memory are each operated on in the same way, based on
the values of several parameters specified by glPixelTransfer and glPixelMap. The details of these
operations, as well as the target buffer into which the pixels are drawn, are specific to the format of
the pixels, as specified by format. format can assume one of eleven symbolic values:

GL_COLOR_INDEX

Each pixel is a single value, a color index. It is converted to fixed-point format, with an
unspecified number of bits to the right of the binary point, regardless of the memory data type.
Floating-point values convert to true fixed-point values. Signed and unsigned integer data is
converted with all fraction bits set to zero. Bitmap data convert to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX SHIFT bits and added to
GL_INDEX OFFSET. If GL_INDEX SHIFT is negative, the shift is to the right. In either
case, zero bits fill otherwise unspecified bit locations in the result.

If the GL is in RGBA mode, the resulting index is converted to an RGBA pixel using the
GL_PIXEL _MAP_I TO_R, GL_PIXEL MAP I TO G, GL_PIXEL _MAP I TO_B,
and GL_PIXEL _MAP I TO A tables. If the GL is in color index mode, and if
GL_MAP_COLOR is true, the index is replaced with the value that it references in lookup
table GL_PIXEL_MAP I TO 1. Whether the lookup replacement of the index is done or
not, the integer part of the index is then ANDed with 2b -1, where b is the number of bits in a
color index buffer.

The resulting indices or RGBA colors are then converted to fragments by attaching the current
raster position z coordinate and texture coordinates to each pixel, then assigning x and y
window coordinates to the nth fragment such that

90

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Xy = X, + n mod width

Yn = ¥y +| n/width |

where (xr, yr) is the current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all
the fragment operations are applied before the fragments are written to the frame buffer.

GL_STENCIL_INDEX

Each pixel is a single value, a stencil index. It is converted to fixed-point format, with an
unspecified number of bits to the right of the binary point, regardless of the memory data type.
Floating-point values convert to true fixed-point values. Signed and unsigned integer data is
converted with all fraction bits set to zero. Bitmap data convert to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX SHIFT bits, and added to
GL_INDEX OFFSET. If GL_INDEX SHIFT is negative, the shift is to the right. In either
case, zero bits fill otherwise unspecified bit locations in the result. [f GL_MAP_STENCIL is
true, the index is replaced with the value that it references in lookup table

GL_PIXEL _MAP_S TO_S. Whether the lookup replacement of the index is done or not,
the integer part of the index is then ANDed with 2b -1, where b is the number of bits in the
stencil buffer. The resulting stencil indices are then written to the stencil buffer such that the
nth index is written to location

Xy = X, + n mod width

Yn = ¥y +| n/width |

where (xr, yr) is the current raster position. Only the pixel ownership test, the scissor test, and
the stencil writemask affect these writes.

GL_DEPTH_COMPONENT

Each pixel is a single-depth component. Floating-point data is converted directly to an internal
floating-point format with unspecified precision. Signed integer data is mapped linearly to the
internal floating-point format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned integer data is mapped
similarly: the largest integer value maps to 1.0, and zero maps to 0.0. The resulting floating-
point depth value is then multiplied by GL_ DEPTH_SCALE and added to
GL_DEPTH_BIAS. The result is clamped to the range [0,1].

The resulting depth components are then converted to fragments by attaching the current

91

OpenGL Reference Manual (Addison-Wesley Publishing Company)

raster position color or color index and texture coordinates to each pixel, then assigning x and
y window coordinates to the nth fragment such that

Xy = X, + n mod width

Yn = ¥y +| n/width |

where (xr, yr) is the current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all
the fragment operations are applied before the fragments are written to the frame buffer.

GL_RGBA

Each pixel is a four-component group: red first, followed by green, followed by blue, followed
by alpha. Floating-point values are converted directly to an internal floating-point format with
unspecified precision. Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to 1.0, and the most
negative representable value maps to -1.0. Unsigned integer data is mapped similarly: the
largest integer value maps to 1.0, and zero maps to 0.0. The resulting floating-point color
values are then multiplied by GL_¢_SCALE and added to GL_c_BIAS, where ¢ is RED,
GREEN, BLUE, and ALPHA for the respective color components. The results are clamped
to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size of lookup table
GL_PIXEL _MAP ¢ TO_c, then replaced by the value that it references in that table. c is R,
G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching the current raster
position z coordinate and texture coordinates to each pixel, then assigning x and y window
coordinates to the nth fragment such that

Xy = X, + n mod width

Yn = ¥y +| n/width |

where (xr, yr) is the current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all
the fragment operations are applied before the fragments are written to the frame buffer.

GL_RED

Each pixel is a single red component. This component is converted to the internal floating-

92

OpenGL Reference Manual (Addison-Wesley Publishing Company)

point format in the same way as the red component of an RGBA pixel is, then it is converted
to an RGBA pixel with green and blue set to 0.0, and alpha set to 1.0. After this conversion,
the pixel is treated just as if it had been read as an RGBA pixel.

GL_GREEN

Each pixel is a single green component. This component is converted to the internal floating-
point format in the same way as the green component of an RGBA pixel is, then it is
converted to an RGBA pixel with red and blue set to 0.0, and alpha set to 1.0. After this
conversion, the pixel is treated just as if it had been read as an RGBA pixel.

GL_BLUE

Each pixel is a single blue component. This component is converted to the internal floating-
point format in the same way as the blue component of an RGBA pixel is, then it is converted
to an RGBA pixel with red and green set to 0.0, and alpha set to 1.0. After this conversion, the
pixel is treated just as if it had been read as an RGBA pixel.

GL_ALPHA

Each pixel is a single alpha component. This component is converted to the internal floating-
point format in the same way as the alpha component of an RGBA pixel is, then it is
converted to an RGBA pixel with red, green, and blue set to 0.0. After this conversion, the
pixel is treated just as if it had been read as an RGBA pixel.

GL_RGB

Each pixel is a three-component group: red first, followed by green, followed by blue. Each
component is converted to the internal floating-point format in the same way as the red, green,
and blue components of an RGBA pixel are. The color triple is converted to an RGBA pixel
with alpha set to 1.0. After this conversion, the pixel is treated just as if it had been read as an
RGBA pixel.

GL_LUMINANCE

Each pixel is a single luminance component. This component is converted to the internal
floating-point format in the same way as the red component of an RGBA pixel is, then it is
converted to an RGBA pixel with red, green, and blue set to the converted luminance value,
and alpha set to 1.0. After this conversion, the pixel is treated just as if it had been read as an
RGBA pixel.

GL_LUMINANCE_ALPHA

Each pixel is a two-component group: luminance first, followed by alpha. The two
components are converted to the internal floating-point format in the same way as the red
component of an RGBA pixel is, then they are converted to an RGBA pixel with red, green,
and blue set to the converted luminance value, and alpha set to the converted alpha value.
After this conversion, the pixel is treated just as if it had been read as an RGBA pixel.

93

OpenGL Reference Manual (Addison-Wesley Publishing Company)

The following table summarizes the meaning of the valThe following table summarizes the meaning
of the valid constants for the fype parameter:

type corresponding type

GL UNSIGNED BYTE unsigned 8-bit integer

GL BYTE signed 8-bit integer

GL BITMAP single bits in unsigned 8-bit integers
GL UNSIGNED SHORT unsigned 16-bit integer

GL SHORT signed 16-bit integer

GL UNSIGNED INT unsigned 32-bit integer

GL INT 32-bit integer

GL FLOAT single-precision floating-point

The rasterization described thus far assumes pixel zoom factors of 1.0. If glPixelZoom is used to
change the x and y pixel zoom factors, pixels are converted to fragments as follows. If (xr, yr) is the
current raster position, and a given pixel is in the nth column and mth row of the pixel rectangle,
then fragments are generated for pixels whose centers are in the rectangle with corners at

(xr + zoomx n, yr + zoomy m)

(xr + zoomx (n + 1), yr + zoomy (m + 1))

where zoomx is the value of GL_ZOOM _X and zoomy is the value of GL_ZOOM Y.

ERRORS

GL_INVALID VALUE is generated if either width or height is negative.

GL_INVALID ENUM is generated if format or type is not one of the accepted values.
GL_INVALID_OPERATION is generated if format is GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA, and

the GL is in color index mode.

GL_INVALID ENUM is generated if #ype is GL_BITMAP and format is not either
GL_COLOR_INDEX or GL_STENCIL_INDEX.

GL_INVALID OPERATION is generated if format is GL_STENCIL_INDEX and there is no
stencil buffer.

GL_INVALID OPERATION is generated if glDrawPixels is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_CURRENT RASTER_POSITION
glGet with argument GL_CURRENT RASTER_POSITION_VALID

94

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

"glAlphaFunc", "gIBlendFunc" , "glCopyPixels" , "glDepthFunc" , "glLogicOp" , "glPixelMap" ,
"glPixelStore" , "glPixelTransfer" , "glPixelZoom" , "glRasterPos" , "glReadPixels" , "glScissor" ,
"g]StencilFunc"

glEdgeFlag

NAME

glEdgeFlag, glEdgeFlagv - flag edges as either boundary or nonboundary

C SPECIFICATION

void glEdgeFlag(GLboolean flag)

PARAMETERS

flag

Specifies the current edge flag value, either true or false.

C SPECIFICATION

void glEdgeFlagv(const GLboolean *flag)

PARAMETERS

flag

Specifies a pointer to an array that contains a single Boolean element, which replaces the
current edge flag value.

DESCRIPTION

Each vertex of a polygon, separate triangle, or separate quadrilateral specified between a
glBegin/glEnd pair is marked as the start of either a boundary or nonboundary edge. If the current
edge flag is true when the vertex is specified, the vertex is marked as the start of a boundary edge.
Otherwise, the vertex is marked as the start of a nonboundary edge. glEdgeFlag sets the edge flag to
true if flag is nonzero, false otherwise.

95

OpenGL Reference Manual (Addison-Wesley Publishing Company)

The vertices of connected triangles and connected quadrilaterals are always marked as boundary,
regardless of the value of the edge flag.

Boundary and nonboundary edge flags on vertices are significant only if GL_ POLYGON_MODE
is set to GL_POINT or GL_LINE. See "glPolygonMode" .

Initially, the edge flag bit is true.

NOTES

The current edge flag can be updated at any time. In particular, glEdgeFlag can be called between a
call to glBegin and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ EDGE_FLAG

SEE ALSO

nn

"glBegin", "glPolygonMode"

glEnable

NAME

glEnable, glDisable - enable or disable GL capabilities

C SPECIFICATION

void glEnable(GLenum cap)

PARAMETERS

cap

Specifies a symbolic constant indicating a GL capability.

C SPECIFICATION

void glDisable(GLenum cap)

96

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS

cap

Specifies a symbolic constant indicating a GL capability.

DESCRIPTION

glEnable and glDisable enable and disable various capabilities. Use glisEnabled or glGet to
determine the current setting of any capability.

Both glEnable and glDisable take a single argument, cap, which can assume one of the following
values:

GL_ALPHA _TEST
If enabled, do alpha testing. See "glAlphaFunc".
GL_AUTO_NORMAL

If enabled, compute surface normal vectors analytically when either GL_MAP2 VERTEX 3
or GL_MAP2 VERTEX 4 is used to generate vertices. See "glMap2" .

GL_BLEND

If enabled, blend the incoming RGBA color values with the values in the color buffers. See
"g|BlendFunc" .

GL_CLIP_PLANE;:
If enabled, clip geometry against user-defined clipping plane i. See "glClipPlane" .
GL_COLOR_MATERIAL

If enabled, have one or more material parameters track the current color. See
"glColorMaterial".

GL_CULL_FACE
If enabled, cull polygons based on their winding in window coordinates. See "glCullFace".
GL_DEPTH_TEST

If enabled, do depth comparisons and update the depth buffer. See "glDepthFunc" and
"glDepthRange" .

GL_DITHER

97

OpenGL Reference Manual (Addison-Wesley Publishing Company)

If enabled, dither color components or indices before they are written to the color buffer.
GL_FOG

If enabled, blend a fog color into the posttexturing color. See "glFog" .
GL_LIGHT:

If enabled, include light i in the evaluation of the lighting equation. See "glLightModel" and
"glLight" .

GL_LIGHTING
If enabled, use the current lighting parameters to compute the vertex color or index.
Otherwise, simply associate the current color or index with each vertex. See "glMaterial",
"glLightModel" and "glLight" .
GL_LINE_SMOOTH
If enabled, draw lines with correct filtering. Otherwise, draw aliased lines. See "glLineWidth".
GL_LINE_STIPPLE
If enabled, use the current line stipple pattern when drawing lines. See "glLineStipple".

GL_LOGIC_OP

If enabled, apply the currently selected logical operation to the incoming and color buffer
indices. See "glLogicOp".

GL_MAP1_COLOR 4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 will generate RGBA
values. See "glMapl1" .

GL_MAP1_INDEX

If enabled, calls to glEvalCoordl1, glEvalMesh1, and glEvalPoint1 will generate color
indices. See "glMapl" .

GL_MAP1_NORMAL

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPointl will generate normals.
See "glMap1" .

GL_MAP1_TEXTURE_COORD 1

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPointl will generate s texture
coordinates. See "glMapl1" .

98

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_MAP1_TEXTURE_COORD 2

If enabled, calls to glEvalCoordl1, glEvalMesh1, and glEvalPoint1 will generate s and ¢
texture coordinates. See "glMap1" .

GL_MAP1_TEXTURE_COORD 3

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 will generate s, ¢, and
texture coordinates. See "glMap1" .

GL_MAP1_TEXTURE_COORD 4

If enabled, calls to glEvalCoordl1, glEvalMesh1, and glEvalPoint1 will generate s, ¢, 7, and ¢
texture coordinates. See "glMap1" .

GL_MAPI1_VERTEX 3

If enabled, calls to glEvalCoordl1, glEvalMesh1, and glEvalPoint1 will generate will
generate x, y, and z vertex coordinates. See "glMap1" .

GL_MAP1_VERTEX 4

If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPointl will generate
homogeneous x, y, z, and w vertex coordinates. See "glMapl1" .

GL_MAP2_COLOR 4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 will generate RGBA
values. See "glMap2" .

GL_MAP2_INDEX

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 will generate color
indices. See "glMap2" .

GL_MAP2_ NORMAL

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 will generate normals.
See "glMap2" .

GL_MAP2_TEXTURE_COORD 1

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 will generate s texture
coordinates. See "glMap2" .

GL_MAP2_TEXTURE_COORD 2

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 will generate s and ¢

99

OpenGL Reference Manual (Addison-Wesley Publishing Company)

texture coordinates. See "gIlMap2"
GL_MAP2 TEXTURE_COORD 3

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 will generate s, ¢, and
texture coordinates. See "glMap2" .

GL_MAP2_TEXTURE_COORD 4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 will generate s, ¢, 7, and ¢
texture coordinates. See "glMap2" .

GL_MAP2_VERTEX 3

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 will generate will
generate x, y, and z vertex coordinates. See "glMap2" .

GL_MAP2_VERTEX 4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 will generate
homogeneous x, y, z, and w vertex coordinates. See "glMap2" .

GL_NORMALIZE

If enabled, normal vectors specified with giNormal are scaled to unit length after
transformation. See "glNormal" .

GL_POINT_SMOOTH

If enabled, draw points with proper filtering. Otherwise, draw aliased points. See
"g]PointSize".

GL_POLYGON_SMOOTH

If enabled, draw polygons with proper filtering. Otherwise, draw aliased polygons. See
"g]PolygonMode".

GL_POLYGON_STIPPLE

If enabled, use the current polygon stipple pattern when rendering polygons. See
"glPolygonStipple".

GL_SCISSOR _TEST
If enabled, discard fragments that are outside the scissor rectangle. See "glScissor".
GL_STENCIL_TEST

If enabled, do stencil testing and update the stencil buffer. See "glStencilFunc" and

100

OpenGL Reference Manual (Addison-Wesley Publishing Company)

"g]StencilOp" .
GL_TEXTURE_1D

If enabled, one-dimensional texturing is performed (unless two-dimensional texturing is also
enabled). See "glTexImage1D".

GL_TEXTURE_ 2D
If enabled, two-dimensional texturing is performed. See "glTexImage2D".
GL_TEXTURE_GEN _Q

If enabled, the g texture coordinate is computed using the texture generation function defined
with glTexGen. Otherwise, the current g texture coordinate is used. See "glTexGen" .

GL_TEXTURE_GEN R

If enabled, the » texture coordinate is computed using the texture generation function defined
with glTexGen. Otherwise, the current » texture coordinate is used. See "glTexGen" .

GL_TEXTURE_GEN S

If enabled, the s texture coordinate is computed using the texture generation function defined
with glTexGen. Otherwise, the current s texture coordinate is used. See "glTexGen" .

GL_TEXTURE_GEN_T

If enabled, the 7 texture coordinate is computed using the texture generation function defined
with glTexGen. Otherwise, the current ¢ texture coordinate is used. See "glTexGen" .

ERRORS
GL_INVALID ENUM is generated if cap is not one of the values listed above.

GL_INVALID OPERATION is generated if glEnable is called between a call to glBegin and the
corresponding call to glEnd.

SEE ALSO

"glAlphaFunc", "gIBlendFunc" , "glClipPlane" , "glColorMaterial" , "glCullFace" , "glDepthFunc" ,
"glDepthRange" , "glFog" , "glGet" , "glIsEnabled" , "glLight" , "glLightModel" , "glLineWidth" ,
"glLineStipple" , "glLogicOp" , "gIMap1" , "gIMap2" , "glMaterial" , "gINormal" , "glPointSize" ,

"glPolygonMode" , "glPolygonStipple" , "glScissor" , "glStencilFunc" , "glStencilOp" , "glTexGen"
, "glTexImagel1D" , "glTexImage2D"

101

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glEvalCoord

NAME

glEvalCoordld, glEvalCoord1f, glEvalCoord2d, glEvalCoord2f, glEvalCoord1ldyv,
glEvalCoord1fv, glEvalCoord2dv, glEvalCoord2fv - evaluate enabled one- and two-dimensional
maps

C SPECIFICATION

void glEvalCoord1d(GLdouble u)

void glEvalCoord1f(GLfloat u)

void glEvalCoord2d(GLdouble u, GLdouble v)
void glEvalCoord2f(GLfloat u, GLfloat v)

PARAMETERS

Specifies a value that is the domain coordinate u to the basis function defined in a previous
glMap1 or gIMap2 command.

Specifies a value that is the domain coordinate v to the basis function defined in a previous
glMap2 command. This argument is not present in an glEvalCoord1 command.

C SPECIFICATION

void glEvalCoord1dv(const GLdouble *u)
void glEvalCoord1fv(const GLfloat *u)
void glEvalCoord2dv(const GLdouble *u)

void glEvalCoord2fv(const GLfloat *u)

PARAMETERS

Specifies a pointer to an array containing either one or two domain coordinates. The first
coordinate is u. The second coordinate is v, which is present only in glEvalCoord2 versions.

102

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

glEvalCoord]1 evaluates enabled one-dimensional maps at argument u. glEvalCoord2 does the
same for two-dimensional maps using two domain values, u and v. Maps are defined with glMap1
and glMap2 and enabled and disabled with glEnable and glDisable.

When one of the glEvalCoord commands is issued, all currently enabled maps of the indicated
dimension are evaluated. Then, for each enabled map, it is as if the corresponding GL command
was issued with the computed value. That is, if GL_MAP1_INDEX or GL_ MAP2 INDEX is
enabled, a gllndex command is simulated. If GL_MAP1_COLOR 4 or GL_MAP2 COLOR 4is
enabled, a glColor command is simulated. If GL_MAP1_NORMAL or GL_ MAP2 NORMAL is
enabled, a normal vector is produced, and if any of GL_ MAP1_TEXTURE_COORD 1,
GL_MAP1_TEXTURE_COORD 2, GL_MAP1_TEXTURE_COORD 3,
GL_MAP1_TEXTURE_COORD 4, GL_MAP2 TEXTURE_COORD 1,

GL_MAP2 TEXTURE_COORD 2, GL_MAP2 TEXTURE_COORD 3, or

GL_MAP2 TEXTURE_COORD 4 is enabled, then an appropriate glTexCoord command is
simulated.

The GL uses evaluated values instead of current values for those evaluations that are enabled, and
current values otherwise, for color, color index, normal, and texture coordinates. However, the
evaluated values do not update the current values. Thus, if glVertex commands are interspersed
with glEvalCoord commands, the color, normal, and texture coordinates associated with the
glVertex commands are not affected by the values generated by the glEvalCoord commands, but
rather only by the most recent glColor, glindex, giNormal, and glTexCoord commands.

No commands are issued for maps that are not enabled. If more than one texture evaluation is
enabled for a particular dimension (for example, GL_MAP2 TEXTURE_COORD 1 and
GL_MAP2 TEXTURE_COORD 2), then only the evaluation of the map that produces the larger
number of coordinates (in this case, GL_ MAP2 TEXTURE_COORD 2) is carried out.
GL_MAP1_VERTEX 4 overrides GL_MAP1_VERTEX 3, and GL_MAP2 VERTEX 4
overrides GL_ MAP2 VERTEX 3, in the same manner. If neither a three- nor four-component
vertex map is enabled for the specified dimension, the glEvalCoord command is ignored.

If automatic normal generation is enabled, by calling glEnable with argument
GL_AUTO _NORMAL, glEvalCoord2 generates surface normals analytically, regardless of the
contents or enabling of the GL_MAP2 NORMAL map. Let

dp d
m= PP
du dv
Then the generated normal n is

n

n=—-
[l

If automatic normal generation is disabled, the corresponding normal map GL_MAP2 NORMAL,
if enabled, is used to produce a normal. If neither automatic normal generation nor a normal map is

103

OpenGL Reference Manual (Addison-Wesley Publishing Company)

enabled, no normal is generated for glEvalCoord2 commands.

ASSOCIATED GETS

glIsEnabled with argument GL_MAP1_VERTEX 3
glIsEnabled with argument GL_MAP1_VERTEX 4
glIsEnabled with argument GL_MAP1_INDEX

glIsEnabled with argument GL_MAP1_COLOR 4
glIsEnabled with argument GL_MAP1_NORMAL

glIsEnabled with argument GL_MAP1_TEXTURE COORD 1
glIsEnabled with argument GL_MAP1_TEXTURE_COORD 2
glIsEnabled with argument GL_MAP1_TEXTURE COORD 3
glIsEnabled with argument GL_MAP1_TEXTURE_COORD 4
glIsEnabled with argument GL_MAP2 VERTEX 3
glIsEnabled with argument GL_MAP2 VERTEX 4
glIsEnabled with argument GL_MAP2 INDEX

glIsEnabled with argument GL_MAP2 COLOR 4

glIsEnabled with argument GL_MAP2 NORMAL

glIsEnabled with argument GL_MAP2 TEXTURE COORD 1
glIsEnabled with argument GL_MAP2 TEXTURE_ COORD 2
glIsEnabled with argument GL_MAP2 TEXTURE COORD 3
glIsEnabled with argument GL_MAP2 TEXTURE COORD 4
glIsEnabled with argument GL_AUTO_NORMAL

glGetMap

SEE ALSO

"glBegin", "glColor" , "glEnable" , "glEvalMesh" , "glEvalPoint" , "glIndex" , "gIMap1" , "glMap2"
, "glMapGrid" , "gINormal" , "glTexCoord" , "glVertex"

glEvalMesh

NAME

glEvalMesh1, glEvalMesh2 - compute a one- or two-dimensional grid of points or lines

C SPECIFICATION

void glEvalMesh1(GLenum mode, GLint i/, GLint i2)

104

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS

mode

In glEvalMesh1, specifies whether to compute a one-dimensional mesh of points or lines.
Symbolic constants GL._ POINT and GL_LINE are accepted.

il,i2

Specify the first and last integer values for grid domain variable i.

C SPECIFICATION

void glEvalMesh2(GLenum mode, GLint i/, Lint i2, GLint j/, GLint j2)

PARAMETERS

mode

In glEvalMesh2, specifies whether to compute a two-dimensional mesh of points, lines, or
polygons. Symbolic constants GL_POINT, GL_LINE, and GL_FILL are accepted.

il,i2
Specify the first and last integer values for grid domain variable i.
J1,j2

Specify the first and last integer values for grid domain variable ;.

DESCRIPTION

glMapGrid and glEvalMesh are used in tandem to efficiently generate and evaluate a series of
evenly spaced map domain values. glEvalMesh steps through the integer domain of a one- or two-
dimensional grid, whose range is the domain of the evaluation maps specified by giMap1 and
glMap2. mode determines whether the resulting vertices are connected as points, lines, or filled
polygons.

In the one-dimensional case, glEvalMesh1, the mesh is generated as if the following code fragment
were executed:

glBegin (type) ;

for (1 i1; 1 <= 12; 1 += 1)
glEvalCoordl (i - &Dgr; u + ul)

glEnd () ;

wherwhere

105

OpenGL Reference Manual (Addison-Wesley Publishing Company)

&Dgr; u = u2-ul)/n

and n, ul, and u2 are the arguments to the most recent giMapGridl command. #ype is
GL_POINTS if mode is GL_POINT, or GL_LINES if mode is GL_LINE. The one absolute
numeric requirement is that if i = », then the value computed from i - &Dgr; u + ul is exactly u2.
In the two-dimensional case, glEvalMesh2, let

&Dgr; u = (u2 - ul)/n

&Dgr; v =2 -vl)/m,

where n, ul, u2, m, vl, and v2 are the arguments to the most recent giMapGrid2 command. Then, if
mode is GL_FILL, the glEvalMesh2 command is equivalent to:

for (7 = j1; J < j2; j += 1) {
glBegin (GL QUAD STRIP);

for (i = i1; i <= i2; i += 1) {
glEvalCoord2 (i - &Dgr; u + ul, j - &Dgr; v o+ Vvl1);
glEvalCoord2 (i - &Dgr; u + ul, (j+1) - &Dgr; v o+
vl) ;
glEnd () ;

}
If mode is GL_LINE, then a call to glEvalMesh2 is equivalent to:

for (j = ji1; J <= j2; j += 1) {
glBegin (GL LINE STRIP);

for (i = 11; 1 <= 12; 1 += 1)
glEvalCoord2 (i - &Dgr; u + ul, j - &Dgr; v o+ vVvl1);
glEnd () ;
}
for (i = i1; i <= i2; i += 1) {

glBegin (GL_LINE STRIP) ;
for (7 = j1; 7 <= jl; 7 += 1)

glEvalCoord2 (i - &Dgr; u + wul, j - &Dgr; v o+ Vvl1);
glEnd () ;

}

And finally, if mode is GL_POINT, then a call to glEvalMesh2 is equivalent to:

glBegin (GL_POINTS) ;
for (j = ji1; J <= j2; j += 1) {
for (i = i1; i <= i2; i += 1) {
glEvalCoord2 (i - &Dgr; u + ul, j - &Dgr; v o+ Vvl1);
}

glEnd () ;
In all three cases, the only absolute numeric requirements are that if i = n, then the value computed

from i - &Dgr; u + ul is exactly u2, and if j = m, then the value computed from j - &Dgr; v + vl is
exactly v2.

106

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS

GL_INVALID ENUM is generated if mode is not an accepted value.

GL_INVALID OPERATION is generated if glEvalMesh is called between a call to giIBegin and

the corresponding call to glEnd.

ASSOCIATED GETS
glGet with argument GL_MAP1_GRID DOMAIN
glGet with argument GL_ MAP2 _GRID DOMAIN

glGet with argument GL_MAP1_GRID SEGMENTS
glGet with argument GL_MAP2 GRID SEGMENTS

SEE ALSO

"glBegin", "glEvalCoord" , "glEvalPoint" , "glMap1" , "gIMap2" , "gIMapGrid"

glEvalPoint

NAME

glEvalPointl, glEvalPoint2 - generate and evaluate a single point in a mesh

C SPECIFICATION
void glEvalPoint1(GLint 7)
void glEvalPoint2(GLint 7, GLint ;)

PARAMETERS

Specifies the integer value for grid domain variable i.

Specifies the integer value for grid domain variable j (glEvalPoint2 only).

107

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

glMapGrid and glEvalMesh are used in tandem to efficiently generate and evaluate a series of
evenly spaced map domain values. glEvalPoint can be used to evaluate a single grid point in the
same gridspace that is traversed by glEvalMesh. Calling glEvalPointl1 is equivalent to calling

glEvalCoordl (i - &Dgr; u + ul);
where
&Dgr; u = (u2-ul)/n

and n, ul, and u2 are the arguments to the most recent giMapGridl command. The one absolute
numeric requirement is that if i = », then the value computed from i - &Dgr; u + ul is exactly u2.

In the two-dimensional case, glEvalPoint2, let
&Dgr; u = (u2 - ul)/n
&Dgr;v=0n2-vl)/m

where n, ul, u2, m, vl, and v2 are the arguments to the most recent gilMapGrid2 command. Then
the glEvalPoint2 command is equivalent to calling

glEvalCoord2 (i - &Dgr; u + ul, j - &Dgr; v o+ Vvl1);

The only absolute numeric requirements are that if i = n, then the value computed from i - &Dgr; u
+ ul is exactly u2, and if j = m, then the value computed from j - &Dgr; v + vl is exactly v2.

ASSOCIATED GETS

glGet with argument GL_ MAP1_GRID DOMAIN
glGet with argument GL_ MAP2 _GRID DOMAIN
glGet with argument GL_MAP1_GRID SEGMENTS
glGet with argument GL_MAP2 GRID SEGMENTS
SEE ALSO

"glEvalCoord", "glEvalMesh" , "gIMapl" , "gIMap2" , "gIMapGrid"

108

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glFeedbackBuffer

NAME

glFeedbackBuffer - controls feedback mode

C SPECIFICATION

void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat *buffer)

PARAMETERS
size
Specifies the maximum number of values that can be written into buffer.

ype

Specifies a symbolic constant that describes the information that will be returned for each
vertex. GL_2D, GL_3D, GL_3D _COLOR, GL_3D _COLOR_TEXTURE, and
GL_4D COLOR TEXTURE are accepted.

buffer

Returns the feedback data.

DESCRIPTION

The glFeedbackBuffer function controls feedback. Feedback, like selection, is a GL mode. The
mode is selected by calling glRenderMode with GL_ FEEDBACK. When the GL is in feedback
mode, no pixels are produced by rasterization. Instead, information about primitives that would
have been rasterized is fed back to the application using the GL.

glFeedbackBuffer has three arguments: buffer is a pointer to an array of floating-point values into
which feedback information is placed. size indicates the size of the array. fype is a symbolic constant
describing the information that is fed back for each vertex. glFeedbackBuffer must be issued
before feedback mode is enabled (by calling glIRenderMode with argument GL_ FEEDBACK).
Setting GL._ FEEDBACK without establishing the feedback buffer, or calling glFeedbackBuffer
while the GL is in feedback mode, is an error.

The GL is taken out of feedback mode by calling glRenderMode with a parameter value other than
GL_FEEDBACK. When this is done while the GL is in feedback mode, glRenderMode returns
the number of entries placed in the feedback array. The returned value never exceeds size. If the
feedback data required more room than was available in buffer, gIRenderMode returns a negative
value.

109

OpenGL Reference Manual (Addison-Wesley Publishing Company)

While in feedback mode, each primitive that would be rasterized generates a block of values that get
copied into the feedback array. If doing so would cause the number of entries to exceed the
maximum, the block is partially written so as to fill the array (if there is any room left at all), and an
overflow flag is set. Each block begins with a code indicating the primitive type, followed by values
that describe the primitive's vertices and associated data. Entries are also written for bitmaps and
pixel rectangles. Feedback occurs after polygon culling and glPolyMode interpretation of polygons
has taken place, so polygons that are culled are not returned in the feedback buffer. It can also occur
after polygons with more than three edges are broken up into triangles, if the GL implementation
renders polygons by performing this decomposition.

The glPassThrough command can be used to insert a marker into the feedback buffer. See
"glPassThrough" .

Following is the grammar for the blocks of values written into the feedback buffer. Each primitive is
indicated with a unique identifying value followed by some number of vertices. Polygon entries
include an integer value indicating how many vertices follow. A vertex is fed back as some number
of floating-point values, as determined by #ype. Colors are fed back as four values in RGBA mode
and one value in color index mode.

feedbackList <-- feedbackItem feedbackList | feedbackltem

feedbackItem <-- point | lineSegment | polygon | bitmap | pixelRectangle | passThru

point <-- GL_POINT_TOKEN vertex

lineSegment <-- GL_LINE_TOKEN vertex vertex | GL_LINE RESET TOKEN vertex vertex
polygon <-- GL_POLYGON_TOKEN n polySpec

polySpec <-- polySpec vertex | vertex vertex vertex

bitmap <-- GL_BITMAP_TOKEN vertex

pixelRectangle <-- GL_DRAW_PIXEL_TOKEN vertex | GL_COPY_PIXEL_TOKEN vertex
passThru <-- GL_PASS THROUGH_TOKEN value

vertex <-- 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture

2d <-- value value

3d <-- value value value

3dColor <-- value value value color

3dColorTexture <-- value value value color tex

4dColorTexture <-- value value value value color tex

color <-- rgba | index

rgba <-- value value value value

index <-- value

tex <-- value value value value

value is a floating-point number, and # is a floating-point integer giving the number of vertices in
the polygon. GL_POINT_TOKEN, GL_LINE _TOKEN, GL_LINE_RESET_TOKEN,
GL_POLYGON_TOKEN, GL_BITMAP_TOKEN, GL_ DRAW_PIXEL_TOKEN,
GL_COPY_PIXEL_TOKEN and GL_ PASS THROUGH_TOKEN are symbolic floating-point
constants. GL_ LINE_RESET_ TOKEN is returned whenever the line stipple pattern is reset. The
data returned as a vertex depends on the feedback #ype.

The following table gives the correspondence between type and the number of values per vertex. k is

1 in color index mode and 4 in RGBA mode.
type coordinates color texture total number of values

110

OpenGL Reference Manual (Addison-Wesley Publishing Company)

X,y 2
GL_2D
X,),z 3
GL_3D
X, Y,z
GL 3D COLOR k 3+k
X, V, 2, k 4
GL 3D COLO R TEXTURE 7+k
X, Y, Z, W 4
GL 4D COLO R TEXTURE k 8+k

Feedback vertex coordinates are in window coordinates, except w, which is in clip coordinates.
Feedback colors are lighted, if lighting is enabled. Feedback texture coordinates are generated, if
texture coordinate generation is enabled. They are always transformed by the texture matrix.

NOTES

glFeedbackBuffer, when used in a display list, is not compiled into the display list but rather is
executed immediately.

ERRORS

GL_INVALID ENUM is generated if #ype is not an accepted value.

GL_INVALID VALUE is generated if size is negative.

GL_INVALID OPERATION is generated if glFeedbackBuffer is called while the render mode
is GL_FEEDBACK, or if glIRenderMode is called with argument GL_ FEEDBACK before
glFeedbackBuffer is called at least once.

GL_INVALID OPERATION is generated if glFeedbackBuffer is called between a call to
glBegin and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ RENDER_MODE

SEE ALSO

"glBegin", "glLineStipple" , "glPassThrough" , "glPolygonMode" , "glRenderMode" ,
"glSelectBuffer"

111

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glFinish

NAME

glFinish - block until all GL execution is complete

C SPECIFICATION

void glFinish(void)

DESCRIPTION

glFinish does not return until the effects of all previously called GL commands are complete. Such
effects include all changes to GL state, all changes to connection state, and all changes to the frame
buffer contents.

NOTES

glFinish requires a round trip to the server.

ERRORS

GL_INVALID OPERATION is generated if glFinish is called between a call to giBegin and the
corresponding call to glEnd.

SEE ALSO

"glFlush", "glXWaitGL" , "glXWaitX"

glFlush

NAME

glFlush - force execution of GL commands in finite time

C SPECIFICATION

void glFlush(void)

112

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

Different GL implementations buffer commands in several different locations, including network
buffers and the graphics accelerator itself. glFlush empties all of these buffers, causing all issued
commands to be executed as quickly as they are accepted by the actual rendering engine. Though
this execution may not be completed in any particular time period, it does complete in finite time.
Because any GL program might be executed over a network, or on an accelerator that buffers
commands, all programs should call glFlush whenever they count on having all of their previously

issued commands completed. For example, call glFlush before waiting for user input that depends
on the generated image.

NOTES

glFlush can return at any time. It does not wait until the execution of all previously issued OpenGL
commands is complete.

ERRORS

GL_INVALID OPERATION is generated if glFlush is called between a call to glBegin and the
corresponding call to glEnd.

SEE ALSO

"glFinish"

glFog

NAME

glFogf, glFogi, glFogfv, glFogiv - specify fog parameters

C SPECIFICATION

void glFogf(GLenum prame, GLfloat param)

void glFogi(GLenum pname, GLint param)

PARAMETERS

pname

113

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies a single-valued fog parameter. GL_ FOG_MODE, GL_FOG_DENSITY,
GL_FOG_START, GL_FOG_END, and GL_FOG_INDEX are accepted.

param

Specifies the value that pname will be set to.

C SPECIFICATION
void glFogfv(GLenum pname, const GLfloat *params)

void glFoegiv(GLenum pname, const GLint *params)

PARAMETERS
pname

Specifies a fog parameter. GL_FOG_MODE, GL_FOG_DENSITY, GL_FOG_START,
GL_FOG_END, GL_FOG_INDEX, and GL_FOG_COLOR are accepted.

params

Specifies the value or values to be assigned to prame. GL_FOG_COLOR requires an array
of four values. All other parameters accept an array containing only a single value.

DESCRIPTION

Fog is enabled and disabled with glEnable and glDisable using the argument GL._ FOG. While
enabled, fog affects rasterized geometry, bitmaps, and pixel blocks, but not buffer clear operations.

glFog assigns the value or values in params to the fog parameter specified by pname. The accepted
values for pname are as follows:

GL_FOG_MODE

params is a single integer or floating-point value that specifies the equation to be used to
compute the fog blend factor, f. Three symbolic constants are accepted: GL_ LINEAR,
GL_EXP, and GL_EXP2. The equations corresponding to these symbolic constants are
defined below. The default fog mode is GL_EXP.

GL_FOG_DENSITY
params is a single integer or floating-point value that specifies density, the fog density used in

both exponential fog equations. Only nonnegative densities are accepted. The default fog
density is 1.0.

114

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_FOG_START

params is a single integer or floating-point value that specifies start, the near distance used in
the linear fog equation. The default near distance is 0.0.

GL_FOG_END

params is a single integer or floating-point value that specifies end, the far distance used in
the linear fog equation. The default far distance is 1.0.

GL_FOG_INDEX

params is a single integer or floating-point value that specifies if, the fog color index. The
default fog index is 0.0.

GL_FOG_COLOR

params contains four integer or floating-point values that specify Cft, the fog color. Integer
values are mapped linearly such that the most positive representable value maps to 1.0, and
the most negative representable value maps to -1.0. Floating-point values are mapped directly.
After conversion, all color components are clamped to the range [0,1]. The default fog color is
(0,0,0,0).

Fog blends a fog color with each rasterized pixel fragment's posttexturing color using a blending
factor f. Factor f'is computed in one of three ways, depending on the fog mode. Let z be the distance

in eye coordinates from the origin to the fragment being fogged. The equation for GL_LINEAR fog
is

end -z

end -start

The equation for GL_EXP fog is

f = E[—densit};-z]

The equation for GL_EXP2 fog is

2
- IRTE
f - E(enail i+ z)

Regardless of the fog mode, fis clamped to the range [0,1] after it is computed. Then, if the GL is in
RGBA color mode, the fragment's color Cr is replaced by

Cr'=fCr+(1-)Ct

In color index mode, the fragment's color index ir is replaced by

115

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ir'=ir+(1-f)if

ERRORS

GL_INVALID ENUM is generated if pname is not an accepted value, or if pname is
GL_FOG_MODE and params is not an accepted value.

GL_INVALID VALUE is generated if pname is GL_FOG_DENSITY and params is negative.

GL_INVALID OPERATION is generated if glFog is called between a call to glBegin and the
corresponding call to glEnd.

ASSOCIATED GETS

glIsEnabled with argument GL_FOG
glGet with argument GL_ FOG_COLOR
glGet with argument GL_FOG_INDEX
glGet with argument GL_FOG_DENSITY
glGet with argument GL_FOG_START
glGet with argument GL_FOG_END
glGet with argument GL_ FOG_MODE

SEE ALSO

"glEnable"

glFrontFace

NAME

glFrontFace - define front- and back-facing polygons

C SPECIFICATION

void glFrontFace(GLenum mode)

PARAMETERS

mode

Specifies the orientation of front-facing polygons. GL_CW and GL_CCW are accepted. The

116

OpenGL Reference Manual (Addison-Wesley Publishing Company)

default value is GL_CCW.

DESCRIPTION

In a scene composed entirely of opaque closed surfaces, back-facing polygons are never visible.
Eliminating these invisible polygons has the obvious benefit of speeding up the rendering of the
image. Elimination of back-facing polygons is enabled and disabled with glEnable and glDisable
using argument GL._CULL_FACE.

The projection of a polygon to window coordinates is said to have clockwise winding if an
imaginary object following the path from its first vertex, its second vertex, and so on, to its last
vertex, and finally back to its first vertex, moves in a clockwise direction about the interior of the
polygon. The polygon's winding is said to be counterclockwise if the imaginary object following the
same path moves in a counterclockwise direction about the interior of the polygon. glFrontFace
specifies whether polygons with clockwise winding in window coordinates, or counterclockwise
winding in window coordinates, are taken to be front-facing. Passing GL._CCW to mode selects
counterclockwise polygons as front-facing; GL_CW selects clockwise polygons as front-facing. By
default, counterclockwise polygons are taken to be front-facing.

ERRORS
GL_INVALID ENUM is generated if mode is not an accepted value.

GL_INVALID OPERATION is generated if glFrontFace is called between a call to glBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_FRONT_FACE

SEE ALSO

"glCullFace", "glLightModel"

glFrustum

NAME

glFrustum - multiply the current matrix by a perspective matrix

117

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION
void glFrustum(GLdouble /eft, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near,
GLdouble far)
PARAMETERS
left, right
Specity the coordinates for the left and right vertical clipping planes.
bottom, top
Specity the coordinates for the bottom and top horizontal clipping planes.
near, far

Specify the distances to the near and far depth clipping planes. Both distances must be
positive.

DESCRIPTION

glFrustum describes a perspective matrix that produces a perspective projection. (left, bottom, -
near) and (right, top, -near) specify the points on the near clipping plane that are mapped to the
lower left and upper right corners of the window, respectively, assuming that the eye is located at (0,
0, 0). -far specifies the location of the far clipping plane. Both near and far must be positive. The
corresponding matrix is

118

OpenGL Reference Manual (Addison-Wesley Publishing Company)

2near

_— 0 AD
right - left

2near

top - bottom
0 0 C D
0 0 -1 0]

right + left
" right - left

top + bottom

) top - bottom

far +near

_fa,r - heatr

2farnear
D=-——
far -near

The current matrix is multiplied by this matrix with the result replacing the current matrix. That is,
if M is the current matrix and F is the frustum perspective matrix, then M is replaced with M o F.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

NOTES

Depth buffer precision is affected by the values specified for near and far. The greater the ratio of
far to near is, the less effective the depth buffer will be at distinguishing between surfaces that are
near each other. If

ir
F = f
near

roughly log?2 r bits of depth buffer precision are lost. Because r approaches infinity as near
approaches zero, near must never be set to zero.

ERRORS
GL_INVALID VALUE is generated if near or far is not positive.

GL_INVALID OPERATION is generated if glFrustum is called between a call to giBegin and
the corresponding call to glEnd.

119

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS

glGet with argument GL_ MATRIX MODE

glGet with argument GL_ MODELVIEW_ MATRIX
glGet with argument GL_ PROJECTION_MATRIX
glGet with argument GL_ TEXTURE MATRIX
SEE ALSO

"glOrtho", "gIlMatrixMode" , "glMultMatrix" , "glPushMatrix" , "glViewport"

glGenLists

NAME

glGenLists - generate a contiguous set of empty display lists

C SPECIFICATION

GLuint glGenLists(GLsizei range)

PARAMETERS

range

Specifies the number of contiguous empty display lists to be generated.

DESCRIPTION

glGenLists has one argument, range. It returns an integer » such that range contiguous empty
display lists, named n, n+1, ..., n+range -1, are created. If range is zero, if there is no group of range
contiguous names available, or if any error is generated, no display lists are generated, and zero is
returned.

ERRORS
GL_INVALID_VALUE is generated if range is negative.

GL_INVALID_OPERATION is generated if glGenLists is called between a call to giBegin and
the corresponding call to glEnd.

120

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS

gllsList

SEE ALSO

"glCallList", "glCallLists" , "glDeleteLists" , "gINewList"

glGet

NAME

glGetBooleanv, glGetDoublev, glGetFloatv, glGetIntegerv - return the value or values of a
selected parameter

C SPECIFICATION

void glGetBooleanv(GLenum pname, GLboolean *params)
void glGetDoublev(GLenum pname, GLdouble *params)
void glGetFloatv(GLenum pname, GLfloat *params)

void glGetIntegerv(GLenum pname, GLint *params)

PARAMETERS

pname

Specifies the parameter value to be returned. The symbolic constants in the list below are
accepted.

params

Returns the value or values of the specified parameter.

DESCRIPTION

These four commands return values for simple state variables in GL. prame is a symbolic constant
indicating the state variable to be returned, and params is a pointer to an array of the indicated type
in which to place the returned data.

Type conversion is performed if params has a different type than the state variable value being

requested. If glGetBooleanv is called, a floating-point or integer value is converted to GL_FALSE
if and only if it is zero. Otherwise, it is converted to GL_TRUE. If glGetIntegerv is called,

121

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Boolean values are returned as GL_TRUE or GL._ FALSE, and most floating-point values are
rounded to the nearest integer value. Floating-point colors and normals, however, are returned with
a linear mapping that maps 1.0 to the most positive representable integer value, and -1.0 to the most
negative representable integer value. If glGetFloatv or glGetDoublev is called, Boolean values are
returned as GL_TRUE or GL_FALSE, and integer values are converted to floating-point values.
The following symbolic constants are accepted by pname:
GL_ACCUM_ALPHA_BITS
params returns one value, the number of alpha bitplanes in the accumulation buffer.
GL_ACCUM_BLUE_BITS
params returns one value, the number of blue bitplanes in the accumulation buffer.
GL_ACCUM_CLEAR_VALUE
params returns four values: the red, green, blue, and alpha values used to clear the
accumulation buffer. Integer values, if requested, are linearly mapped from the internal
floating-point representation such that 1.0 returns the most positive representable integer
value, and -1.0 returns the most negative representable integer value. See
"glClearAccu"glClearAccum" .
GL_ACCUM_GREEN_BITS
params returns one value, the number of green bitplanes in the accumulation buffer.
GL_ACCUM_RED_BITS
params returns one value, the number of red bitplanes in the accumulation buffer.

GL_ALPHA_BIAS

params returns one value, the alpha bias factor used during pixel transfers. See
"glPixel Transfer" .

GL_ALPHA_BITS
params returns one value, the number of alpha bitplanes in each color buffer.
GL_ALPHA SCALE

params returns one value, the alpha scale factor used during pixel transfers. See
"glPixel Transfer" .

GL_ALPHA _TEST

params returns a single Boolean value indicating whether alpha testing of fragments is

122

OpenGL Reference Manual (Addison-Wesley Publishing Company)

enabled. See "glAlphaFunc" .
GL_ALPHA_TEST_FUNC

params returns one value, the symbolic name of the alpha test function. See "glAlphaFunc" .
GL_ALPHA _TEST_REF

params returns one value, the reference value for the alpha test. See "glAlphaFunc" . An

integer value, if requested, is linearly mapped from the internal floating-point representation
such that 1.0 returns the most positive representable integer value, and -1.0 returns the most
negative representable integer value.

GL_ATTRIB_STACK_DEPTH

params returns one value, the depth of the attribute stack. If the stack is empty, zero is
returned. See "glPushAttrib" .

GL_AUTO _NORMAL

params returns a single Boolean value indicating whether 2-D map evaluation automatically
generates surface normals. See "glMap2" .

GL_AUX_BUFFERS

params returns one value, the number of auxiliary color buffers.
GL_BLEND

params returns a single Boolean value indicating whether blending is enabled. See
"glBlendFunc" .

GL_BLEND DST

params returns one value, the symbolic constant identifying the destination blend function.
See "gIBlendFunc" .

GL_BLEND SRC

params returns one value, the symbolic constant identifying the source blend function. See
"g|BlendFunc" .

GL_BLUE_BIAS

params returns one value, the blue bias factor used during pixel transfers. See
"glPixel Transfer" .

GL_BLUE_BITS

123

OpenGL Reference Manual (Addison-Wesley Publishing Company)

params returns one value, the number of blue bitplanes in each color buffer.
GL_BLUE_SCALE

params returns one value, the blue scale factor used during pixel transfers. See
"glPixel Transfer" .

GL_CLIP_PLANE;

params returns a single Boolean value indicating whether the specified clipping plane is
enabled. See "gIClipPlane" .

GL_COLOR_CLEAR_VALUE
params returns four values: the red, green, blue, and alpha values used to clear the color
buffers. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0
returns the most negative representable integer value. See "glClearColor" .

GL_COLOR_MATERIAL

params returns a single Boolean value indicating whether one or more material parameters are
tracking the current color. See "glColorMaterial" .

GL_COLOR_MATERIAL_FACE

params returns one value, a symbolic constant indicating which materials have a parameter
that is tracking the current color. See "glColorMaterial"

GL_COLOR_MATERIAL_PARAMETER

params returns one value, a symbolic constant indicating which material parameters are
tracking the current color. See "glColorMaterial" .

GL_COLOR_WRITEMASK

params returns four Boolean values: the red, green, blue, and alpha write enables for the color
buffers. See "glColorMask" .

GL_CULL_FACE

params returns a single Boolean value indicating whether polygon culling is enabled. See
"glCullFace" .

GL_CULL_FACE_MODE

params returns one value, a symbolic constant indicating which polygon faces are to be
culled. See "glCullFace" .

124

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_CURRENT_COLOR

params returns four values: the red, green, blue, and alpha values of the current color. Integer
values, if requested, are linearly mapped from the internal floating-point representation such
that 1.0 returns the most positive representable integer value, and -1.0 returns the most
negative representable integer value. See "glColor" .

GL_CURRENT _INDEX
params returns one value, the current color index. See "glindex" .

GL_CURRENT_NORMAL
params returns three values: the x, y, and z values of the current normal. Integer values, if
requested, are linearly mapped from the internal floating-point representation such that 1.0
returns the most positive representable integer value, and -1.0 returns the most negative
representable integer value. See "gIlNormal" .

GL_CURRENT_RASTER _COLOR
params returns four values: the red, green, blue, and alpha values of the current raster
position. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0
returns the most negative representable integer value. See "glRasterPos" .

GL_CURRENT_RASTER DISTANCE

params returns one value, the distance from the eye to the current raster position. See
"g]RasterPos" .

GL_CURRENT_RASTER_INDEX
params returns one value, the color index of the current raster position. See "glRasterPos" .
GL_CURRENT_RASTER_POSITION

params returns four values: the x, y, z, and w components of the current raster position. x, y,
and z are in window coordinates, and w is in clip coordinates. See "glRasterPos" .

GL_CURRENT_RASTER TEXTURE_COORDS

params returns four values: the s, ¢, r, and g current raster texture coordinates. See
"g]RasterPos" and "glTexCoord" .

GL_CURRENT_RASTER_POSITION_VALID

params returns a single Boolean value indicating whether the current raster position is valid.
See "glRasterPos" .

125

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_CURRENT _TEXTURE_COORDS
params returns four values: the s, ¢, 7, and ¢ current texture coordinates. See "glTexCoord" .
GL_DEPTH_BIAS

params returns one value, the depth bias factor used during pixel transfers. See
"glPixel Transfer" .

GL_DEPTH_BITS
params returns one value, the number of bitplanes in the depth buffer.
GL_DEPTH_CLEAR_VALUE
params returns one value, the value that is used to clear the depth buffer. Integer values, if
requested, are linearly mapped from the internal floating-point representation such that 1.0
returns the most positive representable integer value, and -1.0 returns the most negative

representable integer value. See "glClearDepth" .

GL_DEPTH_FUNC

params returns one value, the symbolic constant that indicates the depth comparison function.

See "glDepthFunc" .
GL_DEPTH_RANGE

params returns two values: the near and far mapping limits for the depth buffer. Integer
values, if requested, are linearly mapped from the internal floating-point representation such
that 1.0 returns the most positive representable integer value, and -1.0 returns the most
negative representable integer value. See "glDepthRange" .

GL_DEPTH_SCALE

params returns one value, the depth scale factor used during pixel transfers. See
"glPixel Transfer" .

GL_DEPTH_TEST

params returns a single Boolean value indicating whether depth testing of fragments is
enabled. See "glDepthFunc" and "glDepthRange" .

GL_DEPTH_WRITEMASK

params returns a single Boolean value indicating if the depth buffer is enabled for writing. See

"glDepthMask" .

GL_DITHER

126

OpenGL Reference Manual (Addison-Wesley Publishing Company)

params returns a single Boolean value indicating whether dithering of fragment colors and
indices is enabled.
GL_DOUBLEBUFFER

params returns a single Boolean value indicating whether double buffering is supported.
GL_DRAW_BUFFER

params returns one value, a symbolic constant indicating which buffers are being drawn to.
See "glDrawBuffer" .

GL_EDGE_FLAG

params returns a single Boolean value indication whether the current edge flag is true or false.
See "glEdgeFlag" .

GL_FOG

params returns a single Boolean value indicating whether fogging is enabled. See "glFog" .
GL_FOG_COLOR

params returns four values: the red, green, blue, and alpha components of the fog color.

Integer values, if requested, are linearly mapped from the internal floating-point representation

such that 1.0 returns the most positive representable integer value, and -1.0 returns the most
negative representable integer value. See "glFog" .

GL_FOG_DENSITY

params returns one value, the fog density parameter. See "glFog" .
GL_FOG_END

params returns one value, the end factor for the linear fog equation. See "glFog" .
GL_FOG_HINT

params returns one value, a symbolic constant indicating the mode of the fog hint. See
"glHint" .

GL_FOG_INDEX

params returns one value, the fog color index. See "glFog" .

GL_FOG_MODE

params returns one value, a symbolic constant indicating which fog equation is selected. See
"glFOgU .

127

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_FOG_START
params returns one value, the start factor for the linear fog equation. See "glFog" .
GL_FRONT_FACE

params returns one value, a symbolic constant indicating whether clockwise or
counterclockwise polygon winding is treated as front-facing. See "glFrontFace" .

GL_GREEN_BIAS

params returns one value, the green bias factor used during pixel transfers.
GL_GREEN_BITS

params returns one value, the number of green bitplanes in each color buffer.
GL_GREEN_SCALE

params returns one value, the green scale factor used during pixel transfers. See
"glPixel Transfer" .

GL_INDEX BITS
params returns one value, the number of bitplanes in each color index buffer.
GL_INDEX CLEAR _VALUE

params returns one value, the color index used to clear the color index buffers. See
"glClearIndex" .

GL_INDEX_MODE

params returns a single Boolean value indicating whether the GL is in color index mode (true)
or RGBA mode (false).

GL_INDEX OFFSET

params returns one value, the offset added to color and stencil indices during pixel transfers.
See "glPixelTransfer" .

GL_INDEX_SHIFT

params returns one value, the amount that color and stencil indices are shifted during pixel
transfers. See "glPixelTransfer" .

GL_INDEX WRITEMASK

128

OpenGL Reference Manual (Addison-Wesley Publishing Company)

params returns one value, a mask indicating which bitplanes of each color index buffer can be
written. See "glindexMask" .

GL_LIGHT:

params returns a single Boolean value indicating whether the specified light is enabled. See
"glLight" and "glLightModel" .

GL_LIGHTING

params returns a single Boolean value indicating whether lighting is enabled. See
"glLightModel" .

GL_LIGHT _MODEL_AMBIENT
params returns four values: the red, green, blue, and alpha components of the ambient
intensity of the entire scene. Integer values, if requested, are linearly mapped from the internal
floating-point representation such that 1.0 returns the most positive representable integer
value, and -1.0 returns the most negative representable integer value. See "glLightModel" .

GL_LIGHT MODEL _LOCAL_VIEWER

params returns a single Boolean value indicating whether specular reflection calculations treat
the viewer as being local to the scene. See "glLightModel" .

GL_LIGHT MODEL TWO SIDE

params returns a single Boolean value indicating whether separate materials are used to
compute lighting for front- and back-facing polygons. See "glLightModel" .

GL_LINE_SMOOTH

params returns a single Boolean value indicating whether antialiasing of lines is enabled. See
"glLineWidth" .

GL_LINE_SMOOTH_HINT

params returns one value, a symbolic constant indicating the mode of the line antialiasing
hint. See "glHint" .

GL_LINE_STIPPLE

params returns a single Boolean value indicating whether stippling of lines is enabled. See
"glLineStipple" .

GL_LINE_STIPPLE_PATTERN

params returns one value, the 16-bit line stipple pattern. See "glLineStipple" .

129

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_LINE_STIPPLE_REPEAT

params returns one value, the line stipple repeat factor. See "glLineStipple" .
GL_LINE_WIDTH

params returns one value, the line width as specified with glLineWidth.
GL_LINE_WIDTH_GRANULARITY

params returns one value, the width difference between adjacent supported widths for
antialiased lines. See "glLineWidth" .

GL_LINE_ WIDTH_RANGE

params returns two values: the smallest and largest supported widths for antialiased lines. See
"glLineWidth" .

GL_LIST BASE

params returns one value, the base offset added to all names in arrays presented to
glCallLists. See "glListBase" .

GL_LIST INDEX

params returns one value, the name of the display list currently under construction. Zero is
returned if no display list is currently under construction. See "gINewList" .

GL_LIST MODE

params returns one value, a symbolic constant indicating the construction mode of the display
list currently being constructed. See "gINewList" .

GL_LOGIC_OP

params returns a single Boolean value indicating whether fragment indexes are merged into
the framebuffer using a logical operation. See "glLogicOp" .

GL_LOGIC_OP_MODE

params returns one value, a symbolic constant indicating the selected logic operational mode.
See "glLogicOp" .

GL_MAP1_COLOR 4

params returns a single Boolean value indicating whether 1D evaluation generates colors. See
"glMapl1" .

GL_MAP1_GRID DOMAIN

130

OpenGL Reference Manual (Addison-Wesley Publishing Company)

params returns two values: the endpoints of the 1-D map's grid domain. See "gIMapGrid" .
GL_MAP1_GRID_SEGMENTS

params returns one value, the number of partitions in the 1-D map's grid domain. See
"glMapGrid" .

GL_MAP1_INDEX

params returns a single Boolean value indicating whether 1D evaluation generates color
indices. See "glMapl1" .

GL_MAP1_NORMAL

params returns a single Boolean value indicating whether 1D evaluation generates normals.
See "glMap1" .

GL_MAP1_TEXTURE_COORD 1

params returns a single Boolean value indicating whether 1D evaluation generates 1D texture
coordinates. See "glMapl1" .

GL_MAP1_TEXTURE_COORD 2

params returns a single Boolean value indicating whether 1D evaluation generates 2D texture
coordinates. See "glMapl1" .

GL_MAP1_TEXTURE_COORD 3

params returns a single Boolean value indicating whether 1D evaluation generates 3D texture
coordinates. See "glMapl1" .

GL_MAP1_TEXTURE_COORD 4

params returns a single Boolean value indicating whether 1D evaluation generates 4D texture
coordinates. See "glMapl1" .

GL_MAPI1_VERTEX 3

params returns a single Boolean value indicating whether 1D evaluation generates 3D vertex
coordinates. See "glMapl1" .

GL_MAP1_VERTEX 4

params returns a single Boolean value indicating whether 1D evaluation generates 4D vertex
coordinates. See "glMapl1" .

GL_MAP2_COLOR 4

131

OpenGL Reference Manual (Addison-Wesley Publishing Company)

params returns a single Boolean value indicating whether 2D evaluation generates colors. See
"glMap2" .

GL_MAP2_GRID DOMAIN

params returns four values: the endpoints of the 2-D map's i and j grid domains. See
"glMapGrid" .

GL_MAP2_GRID SEGMENTS

params returns two values: the number of partitions in the 2-D map's i and j grid domains. See
"glMapGrid" .

GL_MAP2_INDEX

params returns a single Boolean value indicating whether 2D evaluation generates color
indices. See "glMap2" .

GL_MAP2_ NORMAL

params returns a single Boolean value indicating whether 2D evaluation generates normals.
See "glMap2" .

GL_MAP2_TEXTURE_COORD 1

params returns a single Boolean value indicating whether 2D evaluation generates 1D texture
coordinates. See "glMap2" .

GL_MAP2_TEXTURE_COORD 2

params returns a single Boolean value indicating whether 2D evaluation generates 2D texture
coordinates. See "glMap2" .

GL_MAP2_TEXTURE_COORD 3

params returns a single Boolean value indicating whether 2D evaluation generates 3D texture
coordinates. See "glMap2" .

GL_MAP2_TEXTURE_COORD 4

params returns a single Boolean value indicating whether 2D evaluation generates 4D texture
coordinates. See "glMap2" .

GL_MAP2_VERTEX 3

params returns a single Boolean value indicating whether 2D evaluation generates 3D vertex
coordinates. See "glMap2" .

132

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_MAP2_VERTEX 4

params returns a single Boolean value indicating whether 2D evaluation generates 4D vertex
coordinates. See "glMap2" .

GL_MAP_COLOR

params returns a single Boolean value indicating if colors and color indices are to be replaced
by table lookup during pixel transfers. See "glPixelTransfer" .

GL_MAP _STENCIL

params returns a single Boolean value indicating if stencil indices are to be replaced by table
lookup during pixel transfers. See "glPixelTransfer" .

GL_MATRIX_MODE

params returns one value, a symbolic constant indicating which matrix stack is currently the
target of all matrix operations. See "glMatrixMode" .

GL_MAX_ATTRIB STACK DEPTH

params returns one value, the maximum supported depth of the attribute stack. See
"g]lPushAttrib" .

GL_MAX_CLIP _PLANES

params returns one value, the maximum number of application-defined clipping planes. See
"glClipPlane" .

GL_MAX_EVAL_ORDER

params returns one value, the maximum equation order supported by 1-D and 2-D evaluators.
See "glMapl1" and "glMap2" .

GL_MAX LIGHTS
params returns one value, the maximum number of lights. See "glLight" .
GL_MAX LIST_NESTING

params returns one value, the maximum recursion depth allowed during display-list traversal.
See "glCallList" .

GL_MAX_MODELVIEW_STACK_DEPTH

params returns one value, the maximum supported depth of the modelview matrix stack. See
"glPushMatrix" .

133

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_MAX NAME_STACK _DEPTH

params returns one value, the maximum supported depth of the selection name stack. See
"g]PushName" .

GL_MAX_PIXEL _MAP TABLE

params returns one value, the maximum supported size of a glPixelMap lookup table. See
"glPixelMap" .

GL_MAX_PROJECTION_STACK_DEPTH

params returns one value, the maximum supported depth of the projection matrix stack. See
"g|PushMatrix" .

GL_MAX_TEXTURE_SIZE

params returns one value, the maximum width or height of any texture image (without
borders). See "glTexImage1D" and "glTexImage2D" .

GL_MAX_TEXTURE_STACK DEPTH

params returns one value, the maximum supported depth of the texture matrix stack. See
"g|PushMatrix" .

GL_MAX_VIEWPORT DIMS

params returns two values: the maximum supported width and height of the viewport. See
"glViewport" .

GL_MODELVIEW_MATRIX

params returns sixteen values: the modelview matrix on the top of the modelview matrix
stack. See "glPushMatrix" .

GL_MODELVIEW_STACK DEPTH

params returns one value, the number of matrices on the modelview matrix stack. See
"g|PushMatrix" .

GL_NAME_STACK_DEPTH

params returns one value, the number of names on the selection name stack. See
"g|PushMatrix" .

GL_NORMALIZE

params returns a single Boolean value indicating whether normals are automatically scaled to
unit length after they have been transformed to eye coordinates. See "gIlNormal" .

134

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_PACK_ALIGNMENT

params returns one value, the byte alignment used for writing pixel data to memory. See
"g|PixelStore" .

GL_PACK_LSB_FIRST

params returns a single Boolean value indicating whether single-bit pixels being written to
memory are written first to the least significant bit of each unsigned byte. See "glPixelStore" .

GL_PACK _ROW _LENGTH

params returns one value, the row length used for writing pixel data to memory. See
"glPixelStore" .

GL_PACK_SKIP PIXELS

params returns one value, the number of pixel locations skipped before the first pixel is
written into memory. See "glPixelStore" .

GL_PACK_SKIP ROWS

params returns one value, the number of rows of pixel locations skipped before the first pixel
is written into memory. See "glPixelStore" .

GL_PACK SWAP _BYTES
params returns a single Boolean value indicating whether the bytes of two-byte and four-byte
pixel indices and components are swapped before being written to memory. See
"g]PixelStore"

GL_PERSPECTIVE_CORRECTION_HINT

params returns one value, a symbolic constant indicating the mode of the perspective
correction hint. See "glHint" .

GL_PIXEL MAP A TO A SIZE

params returns one value, the size of the alpha-to-alpha pixel translation table. See
"glPixelMap" .

GL_PIXEL_MAP B TO B SIZE

params returns one value, the size of the blue-to-blue pixel translation table. See
"glPixelMap" .

GL_PIXEL_MAP G TO G SIZE

135

OpenGL Reference Manual (Addison-Wesley Publishing Company)

params returns one value, the size of the green-to-green pixel translation table. See
"glPixelMap" .

GL_PIXEL _MAP I TO A SIZE

params returns one value, the size of the index-to-alpha pixel translation table. See
"g|PixelMap" .

GL_PIXEL _MAP I TO B_SIZE

params returns one value, the size of the index-to-blue pixel translation table. See
"glPixelMap" .

GL_PIXEL _MAP I TO G SIZE

params returns one value, the size of the index-to-green pixel translation table. See
"glPixelMap" .

GL_PIXEL_MAP I TO I SIZE

params returns one value, the size of the index-to-index pixel translation table. See
"glPixelMap" .

GL_PIXEL _MAP I TO R SIZE

params returns one value, the size of the index-to-red pixel translation table. See
"g|PixelMap"

GL_PIXEL_MAP R TO R _SIZE
params returns one value, the size of the red-to-red pixel translation table. See "glPixelMap" .
GL_PIXEL_MAP_S TO_S SIZE

params returns one value, the size of the stencil-to-stencil pixel translation table. See
"glPixelMap" .

GL_POINT _SIZE
params returns one value, the point size as specified by glPointSize.
GL_POINT_SIZE_GRANULARITY

params returns one value, the size difference between adjacent supported sizes for antialiased
points. See "glPointSize" .

GL_POINT SIZE RANGE

params returns two values: the smallest and largest supported sizes for antialiased points. See

136

OpenGL Reference Manual (Addison-Wesley Publishing Company)

"g]PointSize" .
GL_POINT_SMOOTH

params returns a single Boolean value indicating whether antialiasing of points is enabled.
See "glPointSize" .

GL_POINT SMOOTH_HINT

params returns one value, a symbolic constant indicating the mode of the point antialiasing
hint. See "glHint" .

GL_POLYGON_MODE

params returns two values: symbolic constants indicating whether front-facing and back-
facing polygons are rasterized as points, lines, or filled polygons. See "glPolygonMode" .

GL_POLYGON_SMOOTH

params returns a single Boolean value indicating whether antialiasing of polygons is enabled.
See "glPolygonMode" .

GL_POLYGON_SMOOTH_HINT

params returns one value, a symbolic constant indicating the mode of the polygon antialiasing
hint. See "glHint" .

GL_POLYGON_STIPPLE

params returns a single Boolean value indicating whether stippling of polygons is enabled.
See "glPolygonStipple" .

GL_PROJECTION_MATRIX

params returns sixteen values: the projection matrix on the top of the projection matrix stack.
See "glPushMatrix" .

GL_PROJECTION_STACK_DEPTH

params returns one value, the number of matrices on the projection matrix stack. See
"g|PushMatrix" .

GL_READ BUFFER

params returns one value, a symbolic constant indicating which color buffer is selected for
reading. See "glReadPixels" and "glAccum" .

GL_RED_BIAS

137

OpenGL Reference Manual (Addison-Wesley Publishing Company)

params returns one value, the red bias factor used during pixel transfers.
GL_RED_BITS

params returns one value, the number of red bitplanes in each color buffer.
GL_RED_SCALE

params returns one value, the red scale factor used during pixel transfers. See
"glPixel Transfer" .

GL_RENDER_MODE

params returns one value, a symbolic constant indicating whether the GL is in render, select,
or feedback mode. See "glRenderMode" .

GL_RGBA_MODE

params returns a single Boolean value indicating whether the GL is in RGBA mode (true) or
color index mode (false). See "glColor" .

GL_SCISSOR_BOX

params returns four values: the x and y window coordinates of the scissor box, follow by its
width and height. See "glScissor" .

GL_SCISSOR_TEST

params returns a single Boolean value indicating whether scissoring is enabled. See
"g]Scissor" .

GL_SHADE_MODEL

params returns one value, a symbolic constant indicating whether the shading mode is flat or
smooth. See "glShadeModel" .

GL_STENCIL_BITS
params returns one value, the number of bitplanes in the stencil buffer.
GL_STENCIL_CLEAR_VALUE

params returns one value, the index to which the stencil bitplanes are cleared. See
"glClearStencil" .

GL_STENCIL_FAIL

params returns one value, a symbolic constant indicating what action is taken when the stencil
test fails. See "glStencilOp" .

138

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_STENCIL_FUNC

params returns one value, a symbolic constant indicating what function is used to compare the
stencil reference value with the stencil buffer value. See "glStencilFunc" .

GL_STENCIL_PASS DEPTH_FAIL

params returns one value, a symbolic constant indicating what action is taken when the stencil
test passes, but the depth test fails. See "glStencilOp" .

GL_STENCIL_PASS_DEPTH_PASS

params returns one value, a symbolic constant indicating what action is taken when the stencil
test passes and the depth test passes. See "glStencilOp" .

GL_STENCIL_REF

params returns one value, the reference value that is compared with the contents of the stencil
buffer. See "glStencilFunc" .

GL_STENCIL_TEST

params returns a single Boolean value indicating whether stencil testing of fragments is
enabled. See "glStencilFunc" and "glStencilOp" .

GL_STENCIL_VALUE_MASK

params returns one value, the mask that is used to mask both the stencil reference value and
the stencil buffer value before they are compared. See "glStencilFunc" .

GL_STENCIL_WRITEMASK

params returns one value, the mask that controls writing of the stencil bitplanes. See
"glStencilMask" .

GL_STEREO

params returns a single Boolean value indicating whether stereo buffers (left and right) are
supported.

GL_SUBPIXEL_BITS

params returns one value, an estimate of the number of bits of subpixel resolution that are
used to position rasterized geometry in window coordinates.

GL_TEXTURE_1D

params returns a single Boolean value indicating whether 1D texture mapping is enabled. See

139

OpenGL Reference Manual (Addison-Wesley Publishing Company)

"glTexImagel1D" .

GL_TEXTURE_2D

params returns a single Boolean value indicating whether 2D texture mapping is enabled. See

"glTexImage2D" .

GL_TEXTURE_ENV_COLOR

params returns four values: the red, green, blue, and alpha values of the texture environment

color. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0
returns the most negative representable integer value. See "glTexEnv" .

GL_TEXTURE_ENV_MODE

params returns one value, a symbolic constant indicating what texture environment function is

currently selected. See "glTexEnv" .
GL_TEXTURE_GEN S

params returns a single Boolean value indicating whether automatic generation of the S
texture coordinate is enabled. See "glTexGen" .

GL_TEXTURE_GEN_T

params returns a single Boolean value indicating whether automatic generation of the T
texture coordinate is enabled. See "glTexGen" .

GL_TEXTURE_GEN R

params returns a single Boolean value indicating whether automatic generation of the R
texture coordinate is enabled. See "glTexGen" .

GL_TEXTURE_GEN Q

params returns a single Boolean value indicating whether automatic generation of the Q
texture coordinate is enabled. See "glTexGen" .

GL_TEXTURE_MATRIX

params returns sixteen values: the texture matrix on the top of the texture matrix stack. See
"g|PushMatrix" .

GL_TEXTURE_STACK DEPTH

params returns one value, the number of matrices on the texture matrix stack. See
"g|PushMatrix" .

140

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_UNPACK_ALIGNMENT

params returns one value, the byte alignment used for reading pixel data from memory. See
"glPixelStore" .

GL_UNPACK_LSB_FIRST

params returns a single Boolean value indicating whether single-bit pixels being read from
memory are read first from the least significant bit of each unsigned byte. See "glPixelStore" .

GL_UNPACK ROW_LENGTH

params returns one value, the row length used for reading pixel data from memory. See
"g|PixelStore" .

GL_UNPACK _SKIP PIXELS

params returns one value, the number of pixel locations skipped before the first pixel is read
from memory. See "glPixelStore" .

GL_UNPACK_SKIP_ROWS

params returns one value, the number of rows of pixel locations skipped before the first pixel
is read from memory. See "glPixelStore" .

GL_UNPACK _SWAP BYTES

params returns a single Boolean value indicating whether the bytes of two-byte and four-byte
pixel indices and components are swapped after being read from memory. See "glPixelStore" .

GL_VIEWPORT

params returns four values: the x and y window coordinates of the viewport, follow by its
width and height. See "glViewport" .

GL_ZOOM X

params returns one value, the x pixel zoom factor. See "glPixelZoom" .
GL_ZOOM_Y

params returns one value, the y pixel zoom factor. See "glPixelZoom" .

Many of the Boolean parameters can also be queried more easily using glisEnabled.

ERRORS

GL_INVALID ENUM is generated if pname is not an accepted value.

141

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_INVALID OPERATION is generated if glGet is called between a call to glBegin and the
corresponding call to glEnd.

SEE ALSO

"glGetClipPlane", "glGetError" , "glGetLight" , "glGetMap" , "glGetMaterial" , "glGetPixelMap" ,
"glGetPolygonStipple" , "glGetString" , "glGetTexEnv" , "glGetTexGen" , "glGetTexImage" ,

" n

"glGetTexLevelParameter" , "glGetTexParameter" , "gllsEnabled"

glGetClipPlane

NAME

glGetClipPlane - return the coefficients of the specified clipping plane

C SPECIFICATION

void glGetClipPlane(GLenum plane, GLdouble *equation)

PARAMETERS

plane
Specifies a clipping plane. The number of clipping planes depends on the implementation, but
at least six clipping planes are supported. They are identified by symbolic names of the form
GL_CLIP_PLANE;: where 0 ≤ i < GL_MAX_CLIP_PLANES.

equation

Returns four double-precision values that are the coefficients of the plane equation of plane in
eye coordinates.

DESCRIPTION

glGetClipPlane returns in equation the four coefficients of the plane equation for plane.

NOTES
It is always the case that GL_CLIP_PLANE; = GL_CLIP_PLANEO(+ ;.

If an error is generated, no change is made to the contents of equation.

142

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS
GL_INVALID ENUM is generated if plane is not an accepted value.

GL_INVALID OPERATION is generated if glGetClipPlane is called between a call to glBegin
and the corresponding call to glEnd.

SEE ALSO

"glClipPlane"

glGetError

NAME

glGetError - return error information

C SPECIFICATION

GLenum glGetError(void)

DESCRIPTION

glGetError returns the value of the error flag. Each detectable error is assigned a numeric code and
symbolic name. When an error occurs, the error flag is set to the appropriate error code value. No
other errors are recorded until glGetError is called, the error code is returned, and the flag is reset
to GL_NO_ERROR. If a call to glGetError returns GL_NO_ERROR, there has been no
detectable error since the last call to glGetError, or since the GL was initialized.

To allow for distributed implementations, there may be several error flags. If any single error flag
has recorded an error, the value of that flag is returned and that flag is reset to GL_NO_ERROR
when glGetError is called. If more than one flag has recorded an error, glGetError returns and
clears an arbitrary error flag value. Thus, glGetError should always be called in a loop, until it
returns GL_NO_ERROR, if all error flags are to be reset.

Initially, all error flags are set to GL_NO_ERROR.

The currently defined errors are as follows:

GL_NO_ERROR

No error has been recorded. The value of this symbolic constant is guaranteed to be zero.

143

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_INVALID_ENUM

An unacceptable value is specified for an enumerated argument. The offending command is
ignored, having no side effect other than to set the error flag.

GL_INVALID_VALUE

A numeric argument is out of range. The offending command is ignored, having no side effect
other than to set the error flag.

GL_INVALID_OPERATION

The specified operation is not allowed in the current state. The offending command is ignored,
having no side effect other than to set the error flag.

GL_STACK_OVERFLOW

This command would cause a stack overflow. The offending command is ignored, having no
side effect other than to set the error flag.

GL_STACK_UNDERFLOW

This command would cause a stack underflow. The offending command is ignored, having no
side effect other than to set the error flag.

GL_OUT_OF MEMORY

There is not enough memory left to execute the command. The state of the GL is undefined,
except for the state of the error flags, after this error is recorded.

When an error flag is set, results of a GL operation are undefined only if
GL_OUT_OF _MEMORY has occurred. In all other cases, the command generating the error is
ignored and has no effect on the GL state or frame buffer contents.

ERRORS

GL_INVALID OPERATION is generated if glGetError is called between a call to gIBegin and
the corresponding call to glEnd.

glGetLight

NAME

glGetLightfv, glGetLightiv - return light source parameter values

144

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

void glGetLightfv(GLenum /ight, GLenum pname, GLfloat *params)
void glGetLightiv(GLenum light, GLenum pname, GLint *params)

PARAMETERS
light

Specifies a light source. The number of possible lights depends on the implementation, but at
least eight lights are supported. They are identified by symbolic names of the form
GL_LIGHT: where 0 ≤ i < GL_MAX LIGHTS.

pname

Specifies a light source parameter for /ight. Accepted symbolic names are GL_ AMBIENT,
GL_DIFFUSE, GL_SPECULAR, GL_POSITION, GL_SPOT_DIRECTION,
GL_SPOT_EXPONENT, GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUATION.

params

Returns the requested data.

DESCRIPTION

glGetLight returns in params the value or values of a light source parameter. /ight names the light
and is a symbolic name of the form GL_LIGHT!: for 0 ≤ i<GL_MAX LIGHTS, where
GL_MAX LIGHTS is an implementation dependent constant that is greater than or equal to eight.
pname specifies one of ten light source parameters, again by symbolic name.

The parameters are as follows:
GL_AMBIENT

params returns four integer or floating-point values representing the ambient intensity of the
light source. Integer values, when requested, are linearly mapped from the internal floating-
point representation such that 1.0 maps to the most positive representable integer value, and -
1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_DIFFUSE
params returns four integer or floating-point values representing the diffuse intensity of the
light source. Integer values, when requested, are linearly mapped from the internal floating-

point representation such that 1.0 maps to the most positive representable integer value, and -
1.0 maps to the most negative representable integer value. If the internal value is outside the

145

OpenGL Reference Manual (Addison-Wesley Publishing Company)

range [-1,1], the corresponding integer return value is undefined.

GL_SPECULAR

params returns four integer or floating-point values representing the specular intensity of the
light source. Integer values, when requested, are linearly mapped from the internal floating-
point representation such that 1.0 maps to the most positive representable integer value, and -
1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_POSITION

params returns four integer or floating-point values representing the position of the light
source. Integer values, when requested, are computed by rounding the internal floating-point
values to the nearest integer value. The returned values are those maintained in eye
coordinates. They will not be equal to the values specified using glLight, unless the
modelview matrix was identity at the time glLight was called.

GL_SPOT_DIRECTION

params returns three integer or floating-point values representing the direction of the light
source. Integer values, when requested, are computed by rounding the internal floating-point
values to the nearest integer value. The returned values are those maintained in eye
coordinates. They will not be equal to the values specified using glLight, unless the
modelview matrix was identity at the time glLight was called. Although spot direction is
normalized before being used in the lighting equation, the returned values are the transformed
versions of the specified values prior to normalization.

GL_SPOT_EXPONENT

params returns a single integer or floating-point value representing the spot exponent of the
light. An integer value, when requested, is computed by rounding the internal floating-point
representation to the nearest integer.

GL_SPOT_CUTOFF

params returns a single integer or floating-point value representing the spot cutoff angle of the
light. An integer value, when requested, is computed by rounding the internal floating-point
representation to the nearest integer.

GL_CONSTANT_ATTENUATION

params returns a single integer or floating-point value representing the constant (not distance
related) attenuation of the light. An integer value, when requested, is computed by rounding
the internal floating-point representation to the nearest integer.

GL_LINEAR_ATTENUATION

params returns a single integer or floating-point value representing the linear attenuation of

146

OpenGL Reference Manual (Addison-Wesley Publishing Company)

the light. An integer value, when requested, is computed by rounding the internal floating-
point representation to the nearest integer.

GL_QUADRATIC_ATTENUATION
params returns a single integer or floating-point value representing the quadratic attenuation

of the light. An integer value, when requested, is computed by rounding the internal floating-
point representation to the nearest integer.

NOTES
It is always the case that GL_ LIGHT: = GL_LIGHTO + i.

If an error is generated, no change is made to the contents of params.

ERRORS
GL_INVALID ENUM is generated if /ight or pname is not an accepted value.

GL_INVALID OPERATION is generated if glGetLight is called between a call to giBegin and
the corresponding call to glEnd.

SEE ALSO

"glLight"

glGetMap

NAME

<glGetMapdyv, glGetMapfv, glGetMapiv - return evaluator parameters

C SPECIFICATION

void glGetMapdv(GLenum farget, GLenum query, GLdouble *v)
void glGetMapfv(GLenum target, GLenum query, GLfloat *v)
void glGetMapiv(GLenum farget, GLenum query, GLint *v)

PARAMETERS

target

147

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies the symbolic name of a map. Accepted values are GL_MAP1_COLOR 4,
GL_MAPI1_INDEX, GL_MAP1_NORMAL, GL_MAP1_TEXTURE_COORD 1,
GL_MAP1_TEXTURE_COORD 2, GL_MAP1_TEXTURE_COORD 3,
GL_MAP1_TEXTURE_COORD 4, GL_MAP1_VERTEX 3, GL_MAP1_VERTEX 4,
GL_MAP2 _COLOR 4, GL_MAP2 INDEX, GL_MAP2 NORMAL,

GL_MAP2 TEXTURE_COORD_1, GL_MAP2 TEXTURE_COORD 2,

GL_MAP2 TEXTURE_COORD_3, GL_MAP2 TEXTURE_COORD 4,

GL_MAP2 VERTEX 3, and GL_MAP2 VERTEX 4.

query

Specifies which parameter to return. Symbolic names GL_COEFF, GL_ORDER, and
GL_DOMAIN are accepted.

Returns the requested data.

DESCRIPTION

glMap1 and glMap2 define evaluators. glGetMap returns evaluator parameters. farget chooses a
map, query selects a specific parameter, and v points to storage where the values will be returned.

The acceptable values for the target parameter are described in the gIiMap1 and glMap2 reference
pages.

query can assume the following values:
GL_COEFF

v returns the control points for the evaluator function. One-dimensional evaluators return
order control points, and two-dimensional evaluators return uorder x vorder control points.
Each control point consists of one, two, three, or four integer, single-precision floating-point,
or double-precision floating-point values, depending on the type of the evaluator. Two-
dimensional control points are returned in row-major order, incrementing the uorder index
quickly, and the vorder index after each row. Integer values, when requested, are computed by
rounding the internal floating-point values to the nearest integer values.

GL_ORDER

v returns the order of the evaluator function. One-dimensional evaluators return a single value,
order. Two-dimensional evaluators return two values, uorder and vorder.

GL_DOMAIN

v returns the linear # and v mapping parameters. One-dimensional evaluators return two
values, u/ and u2, as specified by gIiMap1. Two-dimensional evaluators return four values

148

OpenGL Reference Manual (Addison-Wesley Publishing Company)

(ul,u2,vl, and v2) as specified by gIMap2. Integer values, when requested, are computed by
rounding the internal floating-point values to the nearest integer values.

NOTES

If an error is generated, no change is made to the contents of v.

ERRORS
GL_INVALID ENUM is generated if either target or query is not an accepted value.

GL_INVALID OPERATION is generated if glGetMap is called between a call to glBegin and
the corresponding call to glEnd.

SEE ALSO

"glEvalCoord", "glMapl" , "gIMap2"

glGetMaterial

NAME

glGetMaterialfv, glGetMaterialiv - return material parameters

C SPECIFICATION

void glGetMaterialfv(GLenum face, GLenum pname, GLfloat *params)
void glGetMaterialiv(GLenum face, GLenum pname, GLint *params)

PARAMETERS

face

Specifies which of the two materials is being queried. GL_FRONT or GL_BACK are
accepted, representing the front and back materials, respectively.

pname
Specifies the material parameter to return. GL_AMBIENT, GL_DIFFUSE,

GL_SPECULAR, GL_EMISSION, GL._SHININESS, and GL_COLOR_INDEXES are
accepted.

149

OpenGL Reference Manual (Addison-Wesley Publishing Company)

params

Returns the requested data.

DESCRIPTION

glGetMaterial returns in params the value or values of parameter pname of material face. Six
parameters are defined:

GL_AMBIENT

params returns four integer or floating-point values representing the ambient reflectance of
the material. Integer values, when requested, are linearly mapped from the internal floating-
point representation such that 1.0 maps to the most positive representable integer value, and -
1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_DIFFUSE

params returns four integer or floating-point values representing the diffuse reflectance of the
material. Integer values, when requested, are linearly mapped from the internal floating-point
representation such that 1.0 maps to the most positive representable integer value, and -1.0
maps to the most negative representable integer value. If the internal value is outside the range
[-1,1], the corresponding integer return value is undefined.

GL_SPECULAR

params returns four integer or floating-point values representing the specular reflectance of
the material. Integer values, when requested, are linearly mapped from the internal floating-
point representation such that 1.0 maps to the most positive representable integer value, and -
1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_EMISSION

params returns four integer or floating-point values representing the emitted light intensity of
the material. Integer values, when requested, are linearly mapped from the internal floating-
point representation such that 1.0 maps to the most positive representable integer value, and -
1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_SHININESS
params returns one integer or floating-point value representing the specular exponent of the

material. Integer values, when requested, are computed by rounding the internal floating-point
value to the nearest integer value.

150

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_COLOR_INDEXES
params returns three integer or floating-point values representing the ambient, diffuse, and
specular indices of the material. These indices are used only for color index lighting. (The

other parameters are all used only for RGBA lighting.) Integer values, when requested, are
computed by rounding the internal floating-point values to the nearest integer values.

NOTES

If an error is generated, no change is made to the contents of params.

ERRORS
GL_INVALID ENUM is generated if face or pname is not an accepted value.

GL_INVALID OPERATION is generated if glGetMaterial is called between a call to giBegin
and the corresponding call to glEnd.

SEE ALSO

"g]|Material"

glGetPixelMap

NAME

glGetPixelMapfv, glGetPixelMapuiv, glGetPixelMapusyv - return the specified pixel map

C SPECIFICATION

void glGetPixelMapfv(GLenum map, GLfloat *values)
void glGetPixelMapuiv(GLenum map, GLuint *values)
void glGetPixelMapusv(GLenum map, GLushort *values)

PARAMETERS

map

Specifies the name of the pixel map to return. Accepted values are
GL_PIXEL_MAP I TO I, GL_PIXEL MAP S TO S, GL_PIXEL_MAP I TO R,

GL_PIXEL MAP I TO G, GL_PIXEL MAP I TO B, GL PIXEL MAP I TO A,

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_PIXEL _MAP R TO R, GL PIXEL MAP G TO G, GL PIXEL MAP B_TO B,
and GL_PIXEL MAP A TO A.

values

Returns the pixel map contents.

DESCRIPTION

Please see the "glPixelMap" reference page for a description of the acceptable values for the map
parameter. glGetPixelMap returns in values the contents of the pixel map specified in map. Pixel
maps are used during the execution of glReadPixels, giDrawPixels, glCopyPixels, glTexImagelD,
and glTexImage2D to map color indices, stencil indices, color components, and depth components
to other values.

Unsigned integer values, if requested, are linearly mapped from the internal fixed or floating-point
representation such that 1.0 maps to the largest representable integer value, and 0.0 maps to zero.

Return unsigned integer values are undefined if the map value was not in the range [0,1].

To determine the required size of map, call glGet with the appropriate symbolic constant.

NOTES

If an error is generated, no change is made to the contents of values.

ERRORS
GL_INVALID ENUM is generated if map is not an accepted value.

GL_INVALID OPERATION is generated if glGetPixelMap is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_PIXEL _MAP I TO I SIZE
glGet with argument GL_PIXEL _MAP S TO S SIZE
glGet with argument GL_PIXEL_MAP I TO R SIZE
glGet with argument GL_PIXEL_MAP I TO G _SIZE
glGet with argument GL_ PIXEL_MAP I TO B _SIZE
glGet with argument GL_PIXEL_MAP I TO_A SIZE
glGet with argument GL_ PIXEL_MAP R TO R SIZE
glGet with argument GL_ PIXEL_MAP G TO G _SIZE

glGet with argument GL_ PIXEL_MAP B TO B SIZE
glGet with argument GL_ PIXEL _MAP A TO A SIZE
glGet with argument GL_ MAX PIXEL MAP TABLE

152

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

nn

"glCopyPixels", "glDrawPixels" , "glPixelMap" , "glPixelTransfer" , "glReadPixels" ,
"glTexImage1D" , "glTexImage2D"

glGetPolygonStipple

NAME

glGetPolygonStipple - return the polygon stipple pattern

C SPECIFICATION

void glGetPolygonStipple(GLubyte *mask)

PARAMETERS

mask

Returns the stipple pattern.

DESCRIPTION

glGetPolygonStipple returns to mask a 32 x 32 polygon stipple pattern. The pattern is packed into

memory as if glReadPixels with both height and width of 32, type of GL_BITMAP, and format of
GL_COLOR_INDEX were called, and the stipple pattern were stored in an internal 32 x 32 color

index buffer. Unlike glReadPixels, however, pixel transfer operations (shift, offset, pixel map) are
not applied to the returned stipple image.

NOTES

If an error is generated, no change is made to the contents of mask.

ERRORS

GL_INVALID_OPERATION is generated if glGetPolygonStipple is called between a call to
glBegin and the corresponding call to glEnd.

153

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

nn

"glPixelStore", "glPixelTransfer" , "glPolygonStipple" , "glReadPixels"

glGetString

NAME

glGetString - returns a string describing the current GL connection

C SPECIFICATION

const GLubyte * glGetString(GLenum name)

PARAMETERS

name
Specifies a symbolic constant, one of GL_ VENDOR, GL_RENDERER, GL._ VERSION, or
GL_EXTENSIONS.

DESCRIPTION

glGetString returns a pointer to a static string describing some aspect of the current GL connection.
name can be one of the following:

GL_VENDOR

Returns the company responsible for this GL implementation. This name does not change
from release to release.

GL_RENDERER

Returns the name of the renderer. This name is typically specific to a particular configuration
of a hardware platform. It does not change from release to release.

GL_VERSION
Returns a version or release number.
GL_EXTENSIONS

Returns a space-separated list of supported extensions to GL.

154

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Because GL does not include queries for the performance characteristics of an implementation, it is
expected that some applications will be written to recognize known platforms and will modify their
GL usage based on known performance characteristics of these platforms. Strings GL_ VENDOR
and GL_RENDERER together uniquely specify a platform, and will not change from release to
release. They should be used by such platform recognition algorithms.

The format and contents of the string that glGetString returns depend on the implementation,

except that extension names will not include space characters and will be separated by space
characters in the GL_ EXTENSIONS string, and that all strings are null-terminated.

NOTES

If an error is generated, glGetString returns zero.

ERRORS
GL_INVALID ENUM is generated if name is not an accepted value.

GL_INVALID OPERATION is generated if glGetString is called between a call to gIBegin and
the corresponding call to glEnd.

glGetTexEnv

NAME

glGetTexEnvfv, glGetTexEnviv - return texture environment parameters

C SPECIFICATION

void glGetTexEnvfv(GLenum target, GLenum pname, GLfloat *params)
void glGetTexEnviv(GLenum farget, GLenum pname, GLint *params)

PARAMETERS
target

Specifies a texture environment. Must be GL_ TEXTURE_ENV.
pname

Specifies the symbolic name of a texture environment parameter. Accepted values are
GL_TEXTURE_ENV_MODE and GL_TEXTURE_ENV_COLOR.

155

OpenGL Reference Manual (Addison-Wesley Publishing Company)

params

Returns the requested data.

DESCRIPTION

glGetTexEnv returns in params selected values of a texture environment that was specified with
glTexEnv. target specifies a texture environment. Currently, only one texture environment is
defined and supported: GL_ TEXTURE_ENV.
pname names a specific texture environment parameter. The two parameters are as follows:
GL_TEXTURE_ENV_MODE

params returns the single-valued texture environment mode, a symbolic constant.
GL_TEXTURE_ENV_COLOR

params returns four integer or floating-point values that are the texture environment color.

Integer values, when requested, are linearly mapped from the internal floating-point

representation such that 1.0 maps to the most positive representable integer, and -1.0 maps to
the most negative representable integer.

NOTES

If an error is generated, no change is made to the contents of params.

ERRORS
GL_INVALID ENUM is generated if farget or pname is not an accepted value.

GL_INVALID OPERATION is generated if glGetTexEnv is called between a call to glBegin
and the corresponding call to glEnd.

SEE ALSO

"glTexEnv"

156

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glGetTexGen

NAME

glGetTexGendyv, glGetTexGenfv, glGetTexGeniv - return texture coordinate generation
parameters

C SPECIFICATION

void glGetTexGendv(GLenum coord, GLenum pname, GLdouble *params)
void glGetTexGenfv(GLenum coord, GLenum pname, GLfloat *params)
void glGetTexGeniv(GLenum coord, GLenum pname, GLint *params)

PARAMETERS

coord
Specifies a texture coordinate. Must be GL._S, GL_T, GL_R, or GL_Q.

pname
Specifies the symbolic name of the value(s) to be returned. Must be either
GL_TEXTURE_GEN_MODE or the name of one of the texture generation plane equations:
GL_OBJECT_PLANE or GL_EYE_PLANE.

params

Returns the requested data.

DESCRIPTION

glGetTexGen returns in params selected parameters of a texture coordinate generation function that
was specified using glTexGen. coord names one of the (s ,¢ ,» ,q) texture coordinates, using the
symbolic constant GL._S, GL_T, GL_R, or GL_Q.
pname specifies one of three symbolic names:
GL_TEXTURE_GEN_MODE

params returns the single-valued texture generation function, a symbolic constant.

GL_OBJECT_PLANE

params returns the four plane equation coefficients that specify object linear-coordinate
generation. Integer values, when requested, are mapped directly from the internal floating-

157

OpenGL Reference Manual (Addison-Wesley Publishing Company)

point representation.

GL_EYE_PLANE
params returns the four plane equation coefficients that specify eye linear-coordinate
generation. Integer values, when requested, are mapped directly from the internal floating-
point representation. The returned values are those maintained in eye coordinates. They are

not equal to the values specified using glTexGen, unless the modelview matrix was identity at
the time glTexGen was called.

NOTES

If an error is generated, no change is made to the contents of params.

ERRORS
GL_INVALID ENUM is generated if coord or pname is not an accepted value.

GL_INVALID OPERATION is generated if glGetTexGen is called between a call to glBegin
and the corresponding call to glEnd.

SEE ALSO

"g]TexGen"

glGetTexImage

NAME

glGetTexImage - return a texture image

C SPECIFICATION

void glGetTexImage(GLenum target, GLint level, GLenum format, GLenum type, GLvoid *pixels
)

PARAMETERS

target

Specifies which texture is to be obtained. GL_TEXTURE_1D and GL_TEXTURE_2D are

158

OpenGL Reference Manual (Addison-Wesley Publishing Company)

accepted.
level

Specifies the level-of-detail number of the desired image. Level 0 is the base image level.
Level 7 is the nth mipmap reduction image.

format

Specifies a pixel format for the returned data. The supported formats are GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL._ LUMINANCE, and
GL_LUMINANCE_ALPHA.

ype

Specifies a pixel type for the returned data. The supported types are
GL_UNSIGNED BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels

Returns the texture image. Should be a pointer to an array of the type specified by type.

DESCRIPTION

glGetTexImage returns a texture image into pixels. target specifies whether the desired texture
image is one specified by glTexImagelD (GL_TEXTURE _1D) or by glTexImage2D
(GL_TEXTURE _2D). level specifies the level-of-detail number of the desired image. format and
type specity the format and type of the desired image array. Please see the reference pages
"glTexImage1D" and "glDrawPixels" for a description of the acceptable values for the format and
type parameters, respectively.

Operation of glGetTexImage is best understood by considering the selected internal four-
component texture image to be an RGBA color buffer the size of the image. The semantics of
glGetTexImage are then identical to those of glReadPixels called with the same format and type,
with x and y set to zero, width set to the width of the texture image (including border if one was
specified), and height set to one for 1-D images, or to the height of the texture image (including
border if one was specified) for 2-D images. Because the internal texture image is an RGBA image,
pixel formats GL_COLOR_INDEX, GL_STENCIL_INDEX, and GL_DEPTH_COMPONENT
are not accepted, and pixel type GL_BITMAP is not accepted.

If the selected texture image does not contain four components, the following mappings are applied.
Single-component textures are treated as RGBA buffers with red set to the single-component value,
and green, blue, and alpha set to zero. Two-component textures are treated as RGBA buffers with
red set to the value of component zero, alpha set to the value of component one, and green and blue
set to zero. Finally, three-component textures are treated as RGBA buffers with red set to
component zero, green set to component one, blue set to component two, and alpha set to zero.

159

OpenGL Reference Manual (Addison-Wesley Publishing Company)

To determine the required size of pixels, use glGetTexLevelParameter to ascertain the dimensions
of the internal texture image, then scale the required number of pixels by the storage required for
each pixel, based on format and type. Be sure to take the pixel storage parameters into account,
especially GL_ PACK_ALIGNMENT.

NOTES

If an error is generated, no change is made to the contents of pixels.

ERRORS
GL_INVALID ENUM is generated if target, format, or type is not an accepted value.

GL_INVALID VALUE is generated if /level is less than zero or greater than log2 max, where max
is the returned value of GL_MAX TEXTURE_SIZE.

GL_INVALID OPERATION is generated if glGetTexImage is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGetTexLevelParameter with argument GL_TEXTURE WIDTH
glGetTexLevelParameter with argument GL_ TEXTURE HEIGHT
glGetTexLevelParameter with argument GL_ TEXTURE BORDER
glGetTexLevelParameter with argument GL_ TEXTURE COMPONENTS
glGet with arguments GL_ PACK_ALIGNMENT and others

SEE ALSO

" n

"g]lDrawPixels", "glReadPixels" , "glTexImagel D" , "glTexImage2D"

glGetTexLevelParameter

NAME

glGetTexLevelParameterfv, glGetTexLevelParameteriv - return texture parameter values for a
specific level of detail

C SPECIFICATION

void glGetTexLevelParameterfv(GLenum target, GLint level, GLenum pname, GLfloat *params

160

OpenGL Reference Manual (Addison-Wesley Publishing Company)

)

void glGetTexLevelParameteriv(GLenum target, GLint level, GLenum pname, GLint *params)

PARAMETERS

target

Specifies the symbolic name of the target texture, either GL_ TEXTURE 1D or
GL_TEXTURE_2D.

level

Specifies the level-of-detail number of the desired image. Level 0 is the base image level.
Level 7 is the nth mipmap reduction image.

pname
Specifies the symbolic name of a texture parameter. GL_ TEXTURE_WIDTH,
GL_TEXTURE_HEIGHT, GL_TEXTURE_COMPONENTS, and
GL_TEXTURE_BORDER are accepted.

params

Returns the requested data.

DESCRIPTION

glGetTexLevelParameter returns in params texture parameter values for a specific level-of-detail
value, specified as level. target defines the target texture, either GL_TEXTURE_ 1D or
GL_TEXTURE_ 2D, to specify one- or two-dimensional texturing. pname specifies the texture
parameter whose value or values will be returned.

The accepted parameter names are as follows:

GL_TEXTURE_WIDTH

params returns a single value, the width of the texture image. This value includes the border
of the texture image.

GL_TEXTURE_HEIGHT

params returns a single value, the height of the texture image. This value includes the border
of the texture image.

GL_TEXTURE_COMPONENTS

161

OpenGL Reference Manual (Addison-Wesley Publishing Company)

params returns a single value, the number of components in the texture image.
GL_TEXTURE_BORDER

params returns a single value, the width in pixels of the border of the texture image.

NOTES

If an error is generated, no change is made to the contents of params.

ERRORS

GL_INVALID ENUM is generated if farget or pname is not an accepted value.

GL_INVALID VALUE is generated if /evel is less than zero or greater than log2 max, where max
is the returned value of GL_ MAX TEXTURE_SIZE.

GL_INVALID OPERATION is generated if glGetTexLevelParameter is called between a call
to glBegin and the corresponding call to glEnd.

SEE ALSO

"n n

"glGetTexParameter", "glTexImage1D" , "glTexImage2D" , "glTexParameter"

glGetTexParameter

NAME

glGetTexParameterfv, glGetTexParameteriv - return texture parameter values

C SPECIFICATION

void glGetTexParameterfv(GLenum target, GLenum pname, GLfloat *params)
void glGetTexParameteriv(GLenum target, GLenum pname, GLint *params)

PARAMETERS

target

Specifies the symbolic name of the target texture. GL_TEXTURE_1D and
GL_TEXTURE_2D are accepted.

162

OpenGL Reference Manual (Addison-Wesley Publishing Company)

pname
Specifies the symbolic name of a texture parameter. GL_ TEXTURE_MAG_FILTER,
GL_TEXTURE_MIN_FILTER, GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP _T,
and GL_TEXTURE_BORDER COLOR are accepted.

params

Returns the texture parameters.

DESCRIPTION

glGetTexParameter returns in params the value or values of the texture parameter specified as
pname. target defines the target texture, either GL_TEXTURE_ 1D or GL_TEXTURE 2D, to
specify one- or two-dimensional texturing. pname accepts the same symbols as glTexParameter,
with the same interpretations:
GL_TEXTURE_MAG _FILTER

Returns the single-valued texture magnification filter, a symbolic constant.
GL_TEXTURE_MIN_FILTER

Returns the single-valued texture minification filter, a symbolic constant.
GL_TEXTURE_WRAP_S

Returns the single-valued wrapping function for texture coordinate s, a symbolic constant.
GL_TEXTURE_WRAP_T

Returns the single-valued wrapping function for texture coordinate ¢, a symbolic constant.
GL_TEXTURE_BORDER _COLOR

Returns four integer or floating-point numbers that comprise the RGBA color of the texture

border. Floating-point values are returned in the range [0,1]. Integer values are returned as a

linear mapping of the internal floating-point representation such that 1.0 maps to the most
positive representable integer and -1.0 maps to the most negative representable integer.

NOTES

If an error is generated, no change is made to the contents of params.

163

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS
GL_INVALID ENUM is generated if farget or pname is not an accepted value.

GL_INVALID OPERATION is generated if glGetTexParameter is called between a call to
glBegin and the corresponding call to glEnd.

SEE ALSO

"g]TexParameter"

glHint

NAME

glHint - specify implementation-specific hints

C SPECIFICATION

void glHint(GLenum target, GLenum mode)

PARAMETERS

target
Specifies a symbolic constant indicating the behavior to be controlled. GL._ FOG_HINT,

GL_LINE_SMOOTH_HINT, GL_PERSPECTIVE_CORRECTION_HINT,
GL_POINT_SMOOTH_HINT, and GL_POLYGON_SMOOTH_HINT are accepted.

mode
Specifies a symbolic constant indicating the desired behavior. GL_ FASTEST, GL_NICEST,
and GL_DONT_CARE are accepted.

DESCRIPTION

Certain aspects of GL behavior, when there is room for interpretation, can be controlled with hints.
A hint is specified with two arguments. target is a symbolic constant indicating the behavior to be
controlled, and mode is another symbolic constant indicating the desired behavior. mode can be one
of the following:

GL_FASTEST

164

OpenGL Reference Manual (Addison-Wesley Publishing Company)

The most efficient option should be chosen.
GL_NICEST
The most correct, or highest quality, option should be chosen.
GL_DONT_CARE
The client doesn't have a preference.
Though the implementation aspects that can be hinted are well defined, the interpretation of the
hints depends on the implementation. The hint aspects that can be specified wiThough the
implementation aspects that can be hinted are well defined, the interpretation of the hints depends
on the implementation. The hint aspects that can be specified with target, along with suggested
semantics, are as follows:
GL_FOG_HINT
Indicates the accuracy of fog calculation. If per-pixel fog calculation is not efficiently
supported by the GL implementation, hinting GL. DONT_CARE or GL_FASTEST can
result in per-vertex calculation of fog effects.

GL_LINE_SMOOTH_HINT

Indicates the sampling quality of antialiased lines. Hinting GL_NICEST can result in more
pixel fragments being generated during rasterization, if a larger filter function is applied.

GL_PERSPECTIVE_CORRECTION_HINT
Indicates the quality of color and texture coordinate interpolation. If perspective-corrected
parameter interpolation is not efficiently supported by the GL implementation, hinting
GL_DONT _CARE or GL_FASTEST can result in simple linear interpolation of colors
and/or texture coordinates.

GL_POINT SMOOTH_HINT

Indicates the sampling quality of antialiased points. Hinting GL._ NICEST can result in more
pixel fragments being generated during rasterization, if a larger filter function is applied.

GL_POLYGON_SMOOTH_HINT

Indicates the sampling quality of antialiased polygons. Hinting GL._NICEST can result in
more pixel fragments being generated during rasterization, if a larger filter function is applied.

NOTES

The interpretation of hints depends on the implementation. glHint can be ignored.

165

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS
GL_INVALID ENUM is generated if either target or mode is not an accepted value.

GL_INVALID OPERATION is generated if glHint is called between a call to glBegin and the
corresponding call to glEnd.

glindex

NAME

glindexd, glindexf, gllndexi, glindexs, glindexdv, glindexfv, glindexiv, gllndexsv - set the
current color index

C SPECIFICATION
void glindexd(GLdouble ¢)
void glIndexf(GLfloat c)

void gllndexi(GLint ¢)
void gllndexs(GLshort ¢)

PARAMETERS

Specifies the new value for the current color index.

C SPECIFICATION
void gllndexdv(const GLdouble *c)
void glIndexfv(const GLfloat *c)

void glIndexiv(const GLint *c)
void gllndexsv(const GLshort *c)

PARAMETERS

Specifies a pointer to a one-element array that contains the new value for the current color
index.

166

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

glIndex updates the current (single-valued) color index. It takes one argument: the new value for
the current color index.

The current index is stored as a floating-point value. Integer values are converted directly to
floating-point values, with no special mapping.

Index values outside the representable range of the color index buffer are not clamped. However,
before an index is dithered (if enabled) and written to the frame buffer, it is converted to fixed-point

format. Any bits in the integer portion of the resulting fixed-point value that do not correspond to
bits in the frame buffer are masked out.

NOTES

The current index can be updated at any time. In particular, gllndex can be called between a call to
glBegin and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_CURRENT INDEX

SEE ALSO

"glColor"

glindexMask

NAME

glindexMask - control the writing of individual bits in the color index buffers

C SPECIFICATION

void glindexMask(GLuint mask)

PARAMETERS

mask

Specifies a bit mask to enable and disable the writing of individual bits in the color index

167

OpenGL Reference Manual (Addison-Wesley Publishing Company)

buffers. Initially, the mask is all ones.

DESCRIPTION

glindexMask controls the writing of individual bits in the color index buffers. The least significant
n bits of mask, where n is the number of bits in a color index buffer, specify a mask. Wherever a one
appears in the mask, the corresponding bit in the color index buffer (or buffers) is made writable.

Where a zero appears, the bit is write-protected.

This mask is used only in color index mode, and it affects only the buffers currently selected for
writing (see "glDrawBuffer" .) Initially, all bits are enabled for writing.

ERRORS

GL_INVALID OPERATION is generated if glindexMask is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_INDEX WRITEMASK

SEE ALSO

"glColorMask", "glDepthMask" , "glDrawBuffer" , "glindex" , "glStencilMask"

glInitNames

NAME

glInitNames - initialize the name stack

C SPECIFICATION

void gllnitNames(void)

DESCRIPTION

The name stack is used during selection mode to allow sets of rendering commands to be uniquely
identified. It consists of an ordered set of unsigned integers. glinitNames causes the name stack to
be initialized to its default empty state.

168

OpenGL Reference Manual (Addison-Wesley Publishing Company)

The name stack is always empty while the render mode is not GL_SELECT. Calls to gllnitNames
while the render mode is not GL_SELECT are ignored.

ERRORS

GL_INVALID OPERATION is generated if gllnitNames is called between a call to glBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ NAME_STACK DEPTH
glGet with argument GL_MAX NAME STACK DEPTH

SEE ALSO

"glLLoadName", "glPushName" , "glRenderMode" , "glSelectBuffer"

glisEnabled

NAME

glisEnabled - test whether a capability is enabled

C SPECIFICATION

GLboolean gllsEnabled(GLenum cap)

PARAMETERS

cap

Specifies a symbolic constant indicating a GL capability.

DESCRIPTION

gllsEnabled returns GL_TRUE if cap is an enabled capability and returns GL_FALSE otherwise.
The following capabilities are accepted for cap:

GL_ALPHA_TEST

169

OpenGL Reference Manual (Addison-Wesley Publishing Company)

See "glAlphaFunc" .
GL_AUTO_NORMAL

See "glEvalCoord" .
GL_BLEND

See "gIBlendFunc" .
GL_CLIP_PLANE;:

See "glClipPlane" .
GL_COLOR_MATERIAL

See "glColorMaterial" .
GL_CULL_FACE

See "glCullFace" .
GL_DEPTH_TEST

See "glDepthFunc" and "glDepthRange" .
GL_DITHER

See "glEnable" .
GL_FOG

See "glFog" .
GL_LIGHT:

See "glLightModel" and "glLight" .
GL_LIGHTING

See "glMaterial" , "glLightModel" , and "glLight" .
GL_LINE_SMOOTH

See "glLineWidth" .
GL_LINE_STIPPLE

See "glLineStipple" .

170

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_LOGIC_OP

See "glLogicOp" .
GL_MAP1_COLOR 4

See "glMap1" .
GL_MAP1_INDEX

See "glMap1" .
GL_MAP1_NORMAL

See "glMap1" .
GL_MAP1_TEXTURE_COORD 1

See "glMap1" .
GL_MAP1_TEXTURE_COORD 2

See "glMap1" .
GL_MAP1_TEXTURE_COORD_3

See "glMap1" .
GL_MAP1_TEXTURE_COORD 4

See "glMap1" .
GL_MAP1_VERTEX 3

See "glMap1" .
GL_MAP1_VERTEX 4

See "glMap1" .
GL_MAP2 _COLOR 4

See "glMap2" .
GL_MAP2_INDEX

See "glMap2" .

171

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_MAP2 NORMAL

See "glMap2" .
GL_MAP2_TEXTURE_COORD 1

See "glMap2" .
GL_MAP2_TEXTURE_COORD 2

See "glMap2" .
GL_MAP2_TEXTURE_COORD _3

See "glMap2" .
GL_MAP2 _TEXTURE_COORD 4

See "glMap2" .
GL_MAP2_VERTEX 3

See "glMap2" .
GL_MAP2_VERTEX 4

See "glMap2" .
GL_NORMALIZE

See "gINormal" .
GL_POINT_SMOOTH

See "glPointSize" .
GL_POLYGON_SMOOTH

See "glPolygonMode" .
GL_POLYGON_STIPPLE

See "glPolygonStipple" .
GL_SCISSOR_TEST

See "glScissor" .

GL_STENCIL_TEST

172

OpenGL Reference Manual (Addison-Wesley Publishing Company)

"

See "glStencilFunc" and "glStencilOp" .
GL_TEXTURE_1D

See "glTexImage1D" .
GL_TEXTURE_ 2D

See "glTexImage2D" .
GL_TEXTURE_GEN _Q

See "glTexGen" .
GL_TEXTURE_GEN R

See "glTexGen" .
GL_TEXTURE_GEN S

See "glTexGen" .
GL_TEXTURE GEN_ T

See "glTexGen" .

NOTES

If an error is generated, gllsEnabled returns zero.

ERRORS
GL_INVALID ENUM is generated if cap is not an accepted value.

GL_INVALID OPERATION is generated if gllsEnabled is called between a call to giBegin and
the corresponding call to glEnd.

SEE ALSO

"glEnable"

173

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gllsList

NAME

glIsList - test for display-list existence

C SPECIFICATION

GLboolean glIsList(GLuint /ist)

PARAMETERS
list

Specifies a potential display-list name.

DESCRIPTION

gllsList returns GL_TRUE if /ist is the name of a display list and returns GL_FALSE otherwise.

ERRORS

GL_INVALID OPERATION is generated if gllsList is called between a call to gIBegin and the
corresponding call to glEnd.

SEE ALSO

"glCallList", "glCallLists" , "glDeleteLists" , "glGenLists" , "gINewList"

glLight

NAME

glLightf, glLighti, glLightfv, glLightiv - set light source parameters

C SPECIFICATION

void glLightf(GLenum /ight, GLenum pname, GLfloat param)

174

OpenGL Reference Manual (Addison-Wesley Publishing Company)

void glLighti(GLenum /ight, GLenum pname, GLint param)

PARAMETERS
light

Specifies a light. The number of lights is depends on the implementation, but at least eight
lights are supported. They are identified by symbolic names of the form GL_LIGHTi where 0
≤ i < GL_MAX_LIGHTS.

pname
Specifies a single-valued light source parameter for /ight. GL_SPOT_EXPONENT,

GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION , and GL_QUADRATIC_ATTENUATION are accepted.

param

Specifies the value that parameter pname of light source light will be set to.

C SPECIFICATION
void glLightfv(GLenum /ight, GLenum pname, const GLfloat *params)

void glLightiv(GLenum /ight, GLenum pname, const GLint *params)

PARAMETERS
light

Specifies a light. The number of lights depends on the implementation, but at least eight lights
are supported. They are identified by symbolic names of the form GL_LIGHT where 0 ≤
i <GL_MAX LIGHTS.

pname

Specifies a light source parameter for light. GL_ AMBIENT, GL_DIFFUSE,
GL_SPECULAR, GL_POSITION, GL_SPOT_DIRECTION, GL_SPOT_EXPONENT,
GL_SPOT_CUTOFF, GL_CONSTANT _ATTENUATION,
GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUATION are accepted.

params

Specifies a pointer to the value or values that parameter pname of light source /ight will be set
to.

175

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

glLight sets the values of individual light source parameters. light names the light and is a symbolic
name of the form GL_LIGHTj, where 0 ≤ 1 < GL_MAX LIGHTS. pname specifies one of ten
light source parameters, again by symbolic name. params is either a single value or a pointer to an
array that contains the new values.

Lighting calculation is enabled and disabled using glEnable and glDisable with argument
GL_LIGHTING. When lighting is enabled, light sources that are enabled contribute to the lighting
calculation. Light source i is enabled and disabled using glEnable and glDisable with argument
GL_LIGHT:.

The ten light parameters are as follows:
GL_AMBIENT

params contains four integer or floating-point values that specify the ambient RGBA intensity
of the light. Integer values are mapped linearly such that the most positive representable value
maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped. The default ambient
light intensity is (0.0, 0.0, 0.0, 1.0).

GL_DIFFUSE

params contains four integer or floating-point values that specify the diffuse RGBA intensity
of the light. Integer values are mapped linearly such that the most positive representable value
maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped. The default diffuse
intensity is (0.0, 0.0, 0.0, 1.0) for all lights other than light zero. The default diffuse intensity
of light zero 1s (1.0, 1.0, 1.0, 1.0).

GL_SPECULAR

params contains four integer or floating-point values that specify the specular RGBA intensity
of the light. Integer values are mapped linearly such that the most positive representable value
maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values are
mapped directly. Neither integer nor floating-point values are clamped. The default specular
intensity is (0.0, 0.0, 0.0, 1.0) for all lights other than light zero. The default specular intensity
of light zero 1s (1.0, 1.0, 1.0, 1.0).

GL_POSITION
params contains four integer or floating-point values that specify the position of the light in

homogeneous object coordinates. Both integer and floating-point values are mapped directly.
Neither integer nor floating-point values are clamped.

The position is transformed by the modelview matrix when glLight is called (just as if it were
a point), and it is stored in eye coordinates. If the w component of the position is 0.0, the light

176

OpenGL Reference Manual (Addison-Wesley Publishing Company)

is treated as a directional source. Diffuse and specular lighting calculations take the light's
direction, but not its actual position, into account, and attenuation is disabled. Otherwise,
diffuse and specular lighting calculations are based on the actual location of the light in eye
coordinates, and attenuation is enabled. The default position is (0,0,1,0); thus, the default light
source is directional, parallel to, and in the direction of the -z axis.

GL_SPOT_DIRECTION

params contains three integer or floating-point values that specify the direction of the light in
homogeneous object coordinates. Both integer and floating-point values are mapped directly.
Neither integer nor floating-point values are clamped.

The spot direction is transformed by the inverse of the modelview matrix when glLight is
called (just as it it were a normal), and it is stored in eye coordinates. It is significant only
when GL_SPOT_CUTOFTF is not 180, which it is by default. The default direction is (0,0,-
1).

GL_SPOT_EXPONENT

params is a single integer or floating-point value that specifies the intensity distribution of the

light. Integer and floating-point values are mapped directly. Only values in the range [0,128]
are accepted.

Effective light intensity is attenuated by the cosine of the angle between the direction of the
light and the direction from the light to the vertex being lighted, raised to the power of the
spot exponent. Thus, higher spot exponents result in a more focused light source, regardless of

the spot cutoff angle (see next paragraph). The default spot exponent is 0, resulting in uniform
light distribution.

GL_SPOT_CUTOFF

params is a single integer or floating-point value that specifies the maximum spread angle of a
light source. Integer and floating-point values are mapped directly. Only values in the range
[0,90], and the special value 180, are accepted. If the angle between the direction of the light
and the direction from the light to the vertex being lighted is greater than the spot cutoff angle,
the light is completely masked. Otherwise, its intensity is controlled by the spot exponent and
the attenuation factors. The default spot cutoff is 180, resulting in uniform light distribution.

GL_CONSTANT_ATTENUATION
GL_LINEAR_ATTENUATION

GL_QUADRATIC_ATTENUATION

params is a single integer or floating-point value that specifies one of the three light

177

OpenGL Reference Manual (Addison-Wesley Publishing Company)

attenuation factors. Integer and floating-point values are mapped directly. Only nonnegative
values are accepted. If the light is positional, rather than directional, its intensity is attenuated
by the reciprocal of the sum of: the constant factor, the linear factor times the distance
between the light and the vertex being lighted, and the quadratic factor times the square of the
same distance. The default attenuation factors are (1,0,0), resulting in no attenuation.

NOTES

It is always the case that GL_ LIGHT: = GL_LIGHTO + i.

ERRORS

GL_INVALID ENUM is generated if either /ight or pname is not an accepted value.
GL_INVALID VALUE is generated if a spot exponent value is specified outside the range
[0,128], or if spot cutoff is specified outside the range [0,90] (except for the special value 180), or if
a negative attenuation factor is specified.

GL_INVALID OPERATION is generated if glLight is called between a call to giBegin and the
corresponding call to glEnd.

ASSOCIATED GETS

glGetLight

glIsEnabled with argument GL_ LIGHTING

SEE ALSO

"glColorMaterial", "glLightModel" , "gIMaterial"

glLightModel

NAME

glLightModelf, glLightModeli, glLightModelfv, glLightModeliv - set the lighting model
parameters

C SPECIFICATION

void glLightModelf(GLenum pname, GLfloat param)

178

OpenGL Reference Manual (Addison-Wesley Publishing Company)

void glLightModeli(GLenum pname, GLint param)

PARAMETERS

pname
Specifies a single-valued lighting model parameter.
GL_LIGHT _MODEL_LOCAL_VIEWER and GL_LIGHT _MODEL_TWO_SIDE are
accepted.

param

Specifies the value that param will be set to.

C SPECIFICATION

void glLightModelfv(GLenum prame, const GLfloat *params)

void glLightModeliv(GLenum pname, const GLint *params)

PARAMETERS

pname

Specifies a lighting model parameter. GL_ LIGHT _MODEL_AMBIENT,
GL_LIGHT _MODEL_LOCAL_VIEWER, and GL_LIGHT _MODEL_TWO_SIDE are
accepted.

params

Specifies a pointer to the value or values that params will be set to.

DESCRIPTION

glLightModel sets the lighting model parameter. pname names a parameter and params gives the
new value. There are three lighting model parameters:

GL_LIGHT_MODEL_AMBIENT

params contains four integer or floating-point values that specify the ambient RGBA intensity
of the entire scene. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are
clamped. The default ambient scene intensity is (0.2, 0.2, 0.2, 1.0).

179

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_LIGHT MODEL LOCAL_VIEWER

params is a single integer or floating-point value that specifies how specular reflection angles
are computed. If params is 0 (or 0.0), specular reflection angles take the view direction to be
parallel to and in the direction of the -z axis, regardless of the location of the vertex in eye
coordinates. Otherwise specular reflections are computed from the origin of the eye coordinate
system. The default is 0.

GL_LIGHT MODEL TWO SIDE

params is a single integer or floating-point value that specifies whether one- or two-sided
lighting calculations are done for polygons. It has no effect on the lighting calculations for
points, lines, or bitmaps. If params is 0 (or 0.0), one-sided lighting is specified, and only the
front material parameters are used in the lighting equation. Otherwise, two-sided lighting is
specified. In this case, vertices of back-facing polygons are lighted using the hack material
parameters, and have their normals reversed before the lighting equation is evaluated. Vertices
of front-facing polygons are always lighted using the front material parameters, with no
change to their normals. The default is 0.

In RGBA mode, the lighted color of a vertex is the sum of the material emission intensity, the
product of the material ambient reflectance and the lighting model full-scene ambient intensity, and
the contribution of each enabled light source. Each light source contributes the sum of three terms:
ambient, diffuse, and specular. The ambient light source contribution is the product of the material
ambient reflectance and the light's ambient intensity. The diffuse light source contribution is the
product of the material diffuse reflectance, the light's diffuse intensity, and the dot product of the
vertex's normal with the normalized vector from the vertex to the light source. The specular light
source contribution is the product of the material specular reflectance, the light's specular intensity,
and the dot product of the normalized vertex-to-eye and vertex-to-light vectors, raised to the power
of the shininess of the material. All three light source contributions are attenuated equally based on
the distance from the vertex to the light source and on light source direction, spread exponent, and
spread cutoff angle. All dot products are replaced with zero if they evaluate to a negative value.

The alpha component of the resulting lighted color is set to the alpha value of the material diffuse
reflectance.

In color index mode, the value of the lighted index of a vertex ranges from the ambient to the
specular values passed to glMaterial using GL_COLOR_INDEXES. Diffuse and specular
coefficients, computed with a (.30, .59, .11) weighting of the lights' colors, the shininess of the

material, and the same reflection and attenuation equations as in the RGBA case, determine how
much above ambient the resulting index is.

ERRORS
GL_INVALID ENUM is generated if pname is not an accepted value.

GL_INVALID OPERATION is generated if glLightModel is called between a call to glBegin
and the corresponding call to glEnd.

180

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS
glGet with argument GL_ LIGHT_MODEL_AMBIENT
glGet with argument GL_ LIGHT_MODEL_LOCAL_VIEWER

glGet with argument GL_LIGHT _MODEL_TWO_SIDE
glIsEnabled with argument GL_ LIGHTING

SEE ALSO

"glLight", "glMaterial"

glLineStipple

NAME

glLineStipple - specify the line stipple pattern

C SPECIFICATION

void glLineStipple(GLint factor, GLushort pattern)

PARAMETERS

factor
Specifies a multiplier for each bit in the line stipple pattern. If factor is 3, for example, each
bit in the pattern will be used three times before the next bit in the pattern is used. factor is
clamped to the range [1, 255] and defaults to one.

pattern

Specifies a 16-bit integer whose bit pattern determines which fragments of a line will be
drawn when the line is rasterized. Bit zero is used first, and the default pattern is all ones.

DESCRIPTION

Line stippling masks out certain fragments produced by rasterization; those fragments will not be
drawn. The masking is achievLine stippling masks out certain fragments produced by rasterization;
those fragments will not be drawn. The masking is achieved by using three parameters: the 16-bit
line stipple pattern pattern, the repeat count factor, and an integer stipple counter s.

Counter s is reset to zero whenever glBegin is called, and before each line segment of a

181

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glBegin(GL_LINES)/glEnd sequence is generated. It is incremented after each fragment of a unit
width aliased line segment is generated, or after each i fragments of an i/ width line segment are
generated. The i fragments associated with count s are masked out if

pattern bit (s factor) mod 16

is zero, otherwise these fragments are sent to the frame buffer. Bit zero of pattern is the least
significant bit.

Antialiased lines are treated as a sequence of 1 x width rectangles for purposes of stippling.
Rectangle s is rasterized or not based on the fragment rule described for aliased lines, counting
rectangles rather than groups of fragments.

Line stippling is enabled or disabled using glEnable and glDisable with argument
GL_LINE_STIPPLE. When enabled, the line stipple pattern is applied as described above. When
disabled, it is as if the pattern were all ones. Initially, line stippling is disabled.

ERRORS

GL_INVALID OPERATION is generated if glLineStipple is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_LINE_STIPPLE_PATTERN

glGet with argument GL_LINE_STIPPLE_REPEAT

glIsEnabled with argument GL_LINE_STIPPLE

SEE ALSO

"glLineWidth", "glPolygonStipple"

glLineWidth

NAME

glLineWidth - specify the width of rasterized lines

C SPECIFICATION

void glLineWidth(GLfloat width)

182

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
width

Specifies the width of rasterized lines. The default is 1.0.

DESCRIPTION

glLineWidth specifies the rasterized width of both aliased and antialiased lines. Using a line width
other than 1.0 has different effects, depending on whether line antialiasing is enabled. Line
antialiasing is controlled by calling glEnable and glDisable with argument GL_LINE _SMOOTH.

If line antialiasing is disabled, the actual width is determined by rounding the supplied width to the
nearest integer. (If the rounding results in the value 0, it is as if the line width were 1.) If | &Dgr; x |
≥ | &Dgr; vy |, i pixels are filled in each column that is rasterized, where i is the rounded value of
width. Otherwise, i pixels are filled in each row that is rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel square that intersects
the region lying within the rectangle having width equal to the current line width, length equal to the
actual length of the line, and centered on the mathematical line segment. The coverage value for
each fragment is the window coordinate area of the intersection of the rectangular region with the
corresponding pixel square. This value is saved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported width is
requested, the nearest supported width is used. Only width 1.0 is guaranteed to be supported; others
depend on the implementation. The range of supported widths and the size difference between

supported widths within the range can be queried by calling glGet with arguments
GL_LINE_WIDTH_RANGE and GL_LINE_WIDTH_GRANULARITY.

NOTES

The line width specified by glLineWidth is always returned when GL_ LINE_WIDTH is queried.
Clamping and rounding for aliased and antialiased lines have no effect on the specified value.

Non-antialiased line width may be clamped to an implementation-dependent maximum. Although

this maximum cannot be queried, it must be no less than the maximum value for antialiased lines,
rounded to the nearest integer value.

ERRORS
GL_INVALID VALUE is generated if width is less than or equal to zero.

GL_INVALID OPERATION is generated if glLineWidth is called between a call to glBegin and
the corresponding call to glEnd.

183

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS

glGet with argument GL_ LINE WIDTH

glGet with argument GL_ LINE_ WIDTH_RANGE

glGet with argument GL_LINE_WIDTH_GRANULARITY
glIsEnabled with argument GL_LINE_ SMOOTH

SEE ALSO

"glEnable"

glListBase

NAME

glListBase - set the display-list base for glCallLists

C SPECIFICATION

void glListBase(GLuint base)

PARAMETERS

base

Specifies an integer offset that will be added to glCallLists offsets to generate display-list
names. Initial value is zero.

DESCRIPTION

glCallLists specifies an array of offsets. Display-list names are generated by adding base to each
offset. Names that reference valid display lists are executed; the others are ignored.

ERRORS

GL_INVALID_OPERATION is generated if glListBase is called between a call to glBegin and
the corresponding call to glEnd.

184

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS

glGet with argument GL_LIST_BASE

SEE ALSO

"glCallLists"

glL.oadldentity

NAME

glLoadldentity - replace the current matrix with the identity matrix

C SPECIFICATION

void glLoadldentity(void)

DESCRIPTION

gllL.oadldentity replaces the current matrix with the identity matrix. It is semantically equivalent to
calling glLoadMatrix with the identity matrix

1000
0100
0010
0001

but in some cases it is more efficient.

ERRORS

GL_INVALID_OPERATION is generated if glLoadlIdentity is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX

185

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glGet with argument GL_ PROJECTION_MATRIX
glGet with argument GL_ TEXTURE MATRIX

SEE ALSO

"glLoadMatrix", "glMatrixMode" , "gIMultMatrix" , "glPushMatrix"

gll.oadMatrix

NAME

glLoadMatrixd, glLoadMatrixf - replace the current matrix with an arbitrary matrix

C SPECIFICATION
void glL.eoadMatrixd(const GLdouble *m)

void glLoadMatrixf(const GLfloat *m)

PARAMETERS

Specifies a pointer to a 4 x 4 matrix stored in column-major order as sixteen consecutive
values.

DESCRIPTION

glLoadMatrix replaces the current matrix with the one specified in m. The current matrix is the
projection matrix, modelview matrix, or texture matrix, determined by the current matrix mode (see
"glMatrixMode").

m points to a 4 x 4 matrix of single- or double-precision floating-point values stored in column-
major order. That is, the matrix is stored as follows:

186

OpenGL Reference Manual (Addison-Wesley Publishing Company)

2 %5 %10 %1y
@3 @7 Gqq G435
ERRORS

GL_INVALID OPERATION is generated if gll.oadMatrix is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS
glGet with argument GL_ MATRIX MODE
glGet with argument GL_ MODELVIEW_ MATRIX

glGet with argument GL_ PROJECTION_MATRIX
glGet with argument GL_ TEXTURE MATRIX

SEE ALSO

"glLoadldentity", "gIMatrixMode" , "gIlMultMatrix" , "glPushMatrix"

gll.oadName

NAME

glLoadName - load a name onto the name stack

C SPECIFICATION

void glLoadName(GLuint name)

PARAMETERS

name

Specifies a name that will replace the top value on the name stack.

187

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION
The name stack is used during selection mode to allow sets of rendering commands to be uniquely
identified. It consists of an ordered set of unsigned integers. gll.oadName causes name to replace

the value on the top of the name stack, which is initially empty.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glLoadName
while the render mode is not GL_SELECT are ignored.

ERRORS

GL_INVALID OPERATION is generated if gl.oadName is called while the name stack is
empty.

GL_INVALID OPERATION is generated if gll.oadName is called between a call to giBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ NAME_STACK DEPTH

glGet with argument GL_MAX_NAME_STACK DEPTH

SEE ALSO

nn

"glInitNames", "glPushName" , "glRenderMode" , "glSelectBuffer"

glL.ogicOp

NAME

glLogicOp - specify a logical pixel operation for color index rendering

C SPECIFICATION

void glLogicOp(GLenum opcode)

PARAMETERS

opcode

Specifies a symbolic constant that selects a logical operation. The following symbols are

188

OpenGL Reference Manual (Addison-Wesley Publishing Company)

accepted: GL_CLEAR, GL_SET, GL_COPY, GL_COPY_INVERTED, GL_NOOP,
GL_INVERT, GL_AND, GL_NAND, GL_OR, GL_NOR, GL_XOR, GL_EQUIYV,
GL_AND REVERSE, GL_AND_INVERTED, GL_OR_REVERSE, and
GL_OR_INVERTED.

DESCRIPTION

glLogicOp specifies a logical operation that, when enabled, is applied between the incoming color
index and the color index at the corresponding location in the frame buffer. The logical operation is
enabled or disabled with glEnable and glDisable using the symbolic constant GL_LOGIC_OP.

opcode is a symbolic constant chosen from the list below. In the explanation of the logical
operations, s represents the incoming color index and d represents the index in the frame buffer.
Standard C-language operators are used. As these bitwise operators suggest, the logical operation is
applied independently to each bit pair of the source and destination indices.

opcode resulting value
GL_CLEAR 0
GL_SET 1
GL_COPY S
GL_COPY_INVERTED I's
GL_NOOP d
GL_INVERT Id
GL_AND s&d
GL_NAND I(s & d)
GL_OR s|d
GL_NOR I(s|d)
GL_XOR s™d
GL_EQUIV (s~ d)
GL_AND_REVERSE s&!d
GL_AND_INVERTED Is&d
GL_OR_REVERSE s|!d
GL_OR_INVERTED Is|d

NOTES

Logical pixel operations are not applied to RGBA color buffers.

When more than one color index buffer is enabled for drawing, logical operations are done
separately for each enabled buffer, using for the destination index the contents of that buffer (see

"g]|DrawBuffer").

opcode must be one of the sixteen accepted values. Other values result in an error.

ERRORS

GL_INVALID ENUM is generated if opcode is not an accepted value.

189

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_INVALID OPERATION is generated if gllLogicOp is called between a call to gIBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ LOGIC_OP_MODE
glIsEnabled with argument GL_LOGIC_OP

SEE ALSO

"glAlphaFunc", "gIlBlendFunc" , "glDrawBuffer" , "glEnable" , "glStencilOp"

glMapl

NAME

glMap1d, gIMap1f - define a one-dimensional evaluator

C SPECIFICATION

void glMap1d(GLenum farget, GLdouble u/, GLdouble u2, GLint stride, GLint order, const
GLdouble *points)

void giMap1f(GLenum target, GLfloat u/, GLfloat u2, GLint stride, GLint order, const GLfloat

*points)

PARAMETERS

target
Specifies the kind of values that are generated by the evaluator. Symbolic constants
GL_MAP1_VERTEX 3, GL_MAP1_VERTEX 4, GL_MAP1_INDEX,
GL_MAP1_COLOR 4, GL_MAP1_NORMAL, GL_MAP1_TEXTURE_COORD 1,
GL_MAP1_TEXTURE_COORD_2, GL_MAP1_TEXTURE_COORD_3, and
GL_MAP1_TEXTURE_COORD_4 are accepted.

ul,u?

Specify a linear mapping of u, as presented to glEvalCoord1, to u”, the variable that is
evaluated by the equations specified by this command.

stride

190

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies the number of floats or doubles between the beginning of one control point and the
beginning of the next one in the data structure referenced in points. This allows control points
to be embedded in arbitrary data structures. The only constraint is that the values for a
particular control point must occupy contiguous memory locations.

order
Specifies the number of control points. Must be positive.
points

Specifies a pointer to the array of control points.

DESCRIPTION

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices,
normals, texture coordinates, and colors. The values produced by an evaluator are sent to further
stages of GL processing just as if they had been presented using glVertex, giNormal, glTexCoord,
and glColor commands, except that the generated values do not update the current normal, texture
coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported
by the GL implementation) can be described using evaluators. These include almost all splines used

in computer graphics, including B-splines, Bezier curves, Hermite splines, and so on.

Evaluators define curves based on Bernstein polynomials. Define p (i) as

p(@) =) BI@R,
i=10

where Ri is a control point and Bin (‘u”) is the ith Bernstein polynomial of degree n (order =n +

1):

B'@) = |"la't -a)
1
Recall that
0°=1 and |?|=1
0

glMapl is used to define the basis and to specify what kind of values are produced. Once defined, a

191

OpenGL Reference Manual (Addison-Wesley Publishing Company)

map can be enabled and disabled by calling glEnable and glDisable with the map name, one of the
nine predefined values for target described below. glEvalCoord1 evaluates the one-dimensional
maps that are enabled. When glEvalCoord1 presents a value u, the Bernstein functions are
evaluated using u”, where

u-ul
uz -ul

target is a symbolic constant that indicates what kind of control points are provided in points, and
what output is generated when the map is evaluated. It can assume one of nine predefined values:

GL_MAPI1_VERTEX 3

Each control point is three floating-point values representing x, y, and z. Internal glVertex3
commands are generated when the map is evaluated.

GL_MAP1_VERTEX 4

Each control point is four floating-point values representing x, y, z, and w. Internal glVertex4
commands are generated when the map is evaluated.

GL_MAP1_INDEX

Each control point is a single floating-point value representing a color index. Internal glindex
commands are generated when the map is evaluated. The current index is not updated with the
value of these glindex commands, however.

GL_MAP1_COLOR 4

Each control point is four floating-point values representing red, green, blue, and alpha.
Internal glColor4 commands are generated when the map is evaluated. The current color is
not updated with the value of these glColor4 commands, however.

GL_MAP1_NORMAL
Each control point is three floating-point values representing the x, y, and z components of a
normal vector. Internal gINormal commands are generated when the map is evaluated. The
current normal is not updated with the value of these glNormal commands, however.
GL_MAP1_TEXTURE_COORD 1
Each control point is a single floating-point value representing the s texture coordinate.
Internal glTexCoordl commands are generated when the map is evaluated. The current
texture coordinates are not updated with the value of these glTexCoord commands, however.

GL_MAP1_TEXTURE_COORD 2

Each control point is two floating-point values representing the s and ¢ texture coordinates.

192

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Internal glTexCoord2 commands are generated when the map is evaluated. The current
texture coordinates are not updated with the value of these glTexCoord commands, however.

GL_MAP1_TEXTURE_COORD _3
Each control point is three floating-point values representing the s, ¢, and r texture
coordinates. Internal glTexCoord3 commands are generated when the map is evaluated. The
current texture coordinates are not updated with the value of these glTexCoord commands,
however.

GL_MAP1_TEXTURE_COORD 4
Each control point is four floating-point values representing the s, ¢, r, and g texture
coordinates. Internal glTexCoord4 commands are generated when the map is evaluated. The
current texture coordinates are not updated with the value of these glTexCoord commands,
however.

stride, order, and points define the array addressing for accessing the control points. points is the

location of the first control point, which occupies one, two, three, or four contiguous memory

locations, depending on which map is being defined. order is the number of control points in the

array. stride tells how many float or double locations to advance the internal memory pointer to
reach the next control point.

NOTES
As is the case with all GL commands that accept pointers to data, it is as if the contents of points

were copied by glMap1 before it returned. Changes to the contents of points have no effect after
glMapl is called.

ERRORS

GL_INVALID ENUM is generated if farget is not an accepted value.

GL_INVALID VALUE is generated if u/ is equal to u2.

GL_INVALID VALUE is generated if stride is less than the number of values in a control point.

GL_INVALID VALUE is generated if order is less than one or greater than
GL_MAX EVAL_ORDER.

GL_INVALID OPERATION is generated if gIMapl1 is called between a call to glBegin and the
corresponding call to glEnd.

ASSOCIATED GETS

glGetMap

193

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glGet with argument GL_ MAX EVAL_ORDER

glIsEnabled with argument GL_MAP1_VERTEX 3
glIsEnabled with argument GL_MAP1_VERTEX 4
glIsEnabled with argument GL_MAP1_INDEX

glIsEnabled with argument GL_MAP1_COLOR 4

glIsEnabled with argument GL_MAP1_NORMAL

glIsEnabled with argument GL_MAP1_TEXTURE COORD 1
glIsEnabled with argument GL_MAP1_TEXTURE_COORD 2
glIsEnabled with argument GL_MAP1_TEXTURE COORD 3
glIsEnabled with argument GL_MAP1_TEXTURE_COORD 4

SEE ALSO

"glBegin", "glColor" , "glEnable" , "glEvalCoord" , "glEvalMesh" , "glEvalPoint" , "glMap2" ,
"glMapGrid" , "gIlNormal" , "glTexCoord" , "glVertex"

glMap2

NAME

glMap2d, glMap2f - define a two-dimensional evaluator

C SPECIFICATION

void glMap2d(GLenum farget, GLdouble u/, GLdouble u2, GLintustride, GLint uorder,
GLdouble vI, GLdouble v2, GLnt vstride, GLint vorder, const GLdouble *points)

void glMap2f(GLenum target, GLfloat u/, GLfloat u2, GLint ustride, GLint uorder, GLfloat v1,
GLfloat v2, GLint vstride, GLint vorder, const GLfloat *points)

PARAMETERS

target
Specifies the kind of values that are generated by the evaluator. Symbolic constants
GL_MAP2_VERTEX 3, GL_MAP2 VERTEX 4, GL_MAP2_INDEX,
GL_MAP2_COLOR_4, GL_MAP2 NORMAL, GL_MAP2_TEXTURE_COORD 1,
GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3, and
GL_MAP2_TEXTURE_COORD_4 are accepted.

ul,u?

Specify a linear mapping of u, as presented to glEvalCoord2, to ", one of the two variables

194

OpenGL Reference Manual (Addison-Wesley Publishing Company)

that is evaluated by the equations specified by this command.
ustride

Specifies the number of floats or doubles between the beginning of control point Rij and the
beginning of control point R (i+1) j , where i and j are the u and v control point indices,
respectively. This allows control points to be embedded in arbitrary data structures. The only
constraint is that the values for a particular control point must occupy contiguous memory
locations.

uorder
Specifies the dimension of the control point array in the u axis. Must be positive.
vi, v2

Specity a linear mapping of v, as presented to glEvalCoord2, to v*, one of the two variables
that is evaluated by the equations specified by this command.

vstride

Specifies the number of floats or doubles between the beginning of control point Rij and the
beginning of control point R i (j+1) , where i and j are the «# and v control point indices,
respectively. This allows control points to be embedded in arbitrary data structures. The only
constraint is that the values for a particular control point must occupy contiguous memory
locations.

vorder
Specifies the dimension of the control point array in the v axis. Must be positive.
points

Specifies a pointer to the array of control points.

DESCRIPTION

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices,
normals, texture coordinates, and colors. The values produced by an evaluator are sent on to further
stages of GL processing just as if they had been presented using glVertex, giNormal, glTexCoord,
and glColor commands, except that the generated values do not update the current normal, texture
coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported
by the GL implementation) can be described using evaluators. These include almost all surfaces
used in computer graphics, including B-spline surfaces, NURBS surfaces, Bezier surfaces, and so
on.

195

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Evaluators define surfaces based on bivariate Bernstein polynomials. Define
p(&,0)
as

p(a,0) = 3) B?m)B}T” (O R,

i=0j=0
where Rij is a control point, Bin (‘u") is the ith Bernstein polynomial of degree

n (uorder =n + 1)

B" (#) = ’: & -a)"

and Bjm (v") is the jth Bernstein polynomial of degree m (vorder =m + 1)

B () = |" -0

Recall that

0°=1 and |*|=1
0

glMap2 is used to define the basis and to specify what kind of values are produced. Once defined, a
map can be enabled and disabled by calling glEnable and glDisable with the map name, one of the
nine predefined values for farget, described below. When glEvalCoord2 presents values u and v,
the bivariate Bernstein polynomials are evaluated using #” and v*, where

) u-ul
w= u2-ul
) -0l
v= v2-vl

target is a symbolic constant that indicates what kind of control points are provided in points, and
what output is generated when the map is evaluated. It can assume one of nine predefined values:

GL_MAP2_VERTEX 3

196

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Each control point is three floating-point values representing x, y, and z. Internal glVertex3
commands are generated when the map is evaluated.

GL_MAP2_VERTEX 4

Each control point is four floating-point values representing x, y, z, and w. Internal glVertex4
commands are generated when the map is evaluated.

GL_MAP2_INDEX

Each control point is a single floating-point value representing a color index. Internal glindex
commands are generated when the map is evaluated. The current index is not updated with the
value of these gllndex commands, however.

GL_MAP2_COLOR 4

Each control point is four floating-point values representing red, green, blue, and alpha.
Internal glColor4 commands are generated when the map is evaluated. The current color is
not updated with the value of these glColor4 commands, however.

GL_MAP2_ NORMAL

Each control point is three floating-point values representing the x, y, and z components of a
normal vector. Internal gINormal commands are generated when the map is evaluated. The
current normal is not updated with the value of these gINormal commands, however.

GL_MAP2_TEXTURE_COORD 1

Each control point is a single floating-point value representing the s texture coordinate.

Internal glTexCoordl commands are generated when the map is evaluated. The current

texture coordinates are not updated with the value of these glTexCoord commands, however.
GL_MAP2 TEXTURE_COORD 2

Each control point is two floating-point values representing the s and ¢ texture coordinates.
Internal glTexCoord2 commands are generated when the map is evaluated. The current
texture coordinates are not updated with the value of these glTexCoord commands, however.

GL_MAP2_TEXTURE_COORD 3

Each control point is three floating-point values representing the s, ¢, and r texture
coordinates. Internal glTexCoord3 commands are generated when the map is evaluated. The
current texture coordinates are not updated with the value of these glTexCoord commands,
however.

GL_MAP2_TEXTURE_COORD 4

Each control point is four floating-point values representing the s, ¢, 7, and g texture
coordinates. Internal glTexCoord4 commands are generated when the map is evaluated. The

197

OpenGL Reference Manual (Addison-Wesley Publishing Company)

current texture coordinates are not updated with the value of these glTexCoord commands,
however.

ustride, uorder, vstride, vorder, and points define the array addressing for accessing the control
points. points is the location of the first control point, which occupies one, two, three, or four
contiguous memory locations, depending on which map is being defined. There are uorder x vorder
control points in the array. ustride tells how many float or double locations are skipped to advance
the internal memory pointer from control point Ri j to control point R(i+1) j . vstride tells how
many float or double locations are skipped to advance the internal memory pointer from control
point Ri j to control point Ri (j+1) .

NOTES

As is the case with all GL commands that accept pointers to data, it is as if the contents of points
were copied by glMap2 before it returned. Changes to the contents of points have no effect after
glMap?2 is called.

ERRORS
GL_INVALID ENUM is generated if farget is not an accepted value.
GL_INVALID VALUE is generated if u/ is equal to u2, or if v/ is equal to v2.

GL_INVALID VALUE is generated if either ustride or vstride is less than the number of values in
a control point.

GL_INVALID VALUE is generated if either uorder or vorder is less than one or greater than
GL_MAX EVAL_ORDER.

GL_INVALID OPERATION is generated if gIMap2 is called between a call to glBegin and the
corresponding call to glEnd.

ASSOCIATED GETS

glGetMap

glGet with argument GL_ MAX EVAL_ORDER

glIsEnabled with argument GL_MAP2 VERTEX 3
glIsEnabled with argument GL_MAP2 VERTEX 4
glIsEnabled with argument GL_MAP2 INDEX

glIsEnabled with argument GL_MAP2 COLOR 4

glIsEnabled with argument GL_MAP2 NORMAL

glIsEnabled with argument GL_MAP2 TEXTURE COORD 1
glIsEnabled with argument GL_MAP2 TEXTURE _COORD 2
glIsEnabled with argument GL_MAP2 TEXTURE COORD 3
glIsEnabled with argument GL_MAP2 TEXTURE _COORD 4

198

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

"glBegin", "glColor" , "glEnable" , "glEvalCoord" , "glEvalMesh" , "glEvalPoint" , "glMapl",
"glMapGrid" , "gIlNormal" , "glTexCoord" , "glVertex"

glMapGrid

NAME

giMapGridld, giMapGrid1f, giMapGrid2d, gIiMapGrid2f - define a one- or two-dimensional
mesh

C SPECIFICATION

void glMapGrid1ld(GLint un, GLdouble u/, GLdouble u2)

void glMapGrid1f(GLint un, GLfloat u/, GLfloat u2)

void glMapGrid2d(GLint un, GLdouble u/, GLdouble ©2, GLint vn, GLdouble v/, GLdouble v2)

void glMapGrid2f(GLint un, GLfloat u/, GLfloat u2, GLint va, GLfloat v/, GLfloat v2)

PARAMETERS
un

Specifies the number of partitions in the grid range interval [u/, u2]. Must be positive.
ul,u?

Specify the mappings for integer grid domain values i=0 and i=un.
vh

Specifies the number of partitions in the grid range interval [v/, v2] (gIMapGrid2 only).
vi,v2

Specify the mappings for integer grid domain values j=0 and j=vn (gIMapGrid2 only).

DESCRIPTION

glMapGrid and glEvalMesh are used in tandem to efficiently generate and evaluate a series of

199

OpenGL Reference Manual (Addison-Wesley Publishing Company)

evenly spaced map domain values. glEvalMesh steps through the integer domain of a one- or two-
dimensional grid, whose range is the domain of the evaluation maps specified by giMap1 and
glMap2.

glMapGrid1l and gIMapGrid?2 specify the linear grid mappings between the i (or i and ;) integer
grid coordinates, to the u (or u and v) floating-point evaluation map coordinates. See "glMap1" and
"glMap?2" for details of how u and v coordinates are evaluated.

glMapGridl1 specifies a single linear mapping such that integer grid coordinate 0 maps exactly to
ul, and integer grid coordinate un maps exactly to u2. All other integer grid coordinates i are
mapped such that

u=i(u2-ul)/un+ul

glMapGrid2 specifies two such linear mappings. One maps integer grid coordinate ;=0 exactly to
ul, and integer grid coordinate i=un exactly to u2. The other maps integer grid coordinate j=0
exactly to v/, and integer grid coordinate j=vn exactly to v2. Other integer grid coordinates i and j
are mapped such that

u=i(u2-ul)/un+ul

v=j(v2-vl)/vn+vl

The mappings specified by gIiMapGrid are used identically by glEvalMesh and glEvalPoint.

ERRORS
GL_INVALID VALUE is generated if either un or vu is not positive.

GL_INVALID OPERATION is generated if gIMapGrid is called between a call to glBegin and
the corresponding call to glEnd.

ASSOCIATED GETS
glGet with argument GL_ MAP1_GRID DOMAIN
glGet with argument GL_ MAP2 _GRID DOMAIN

glGet with argument GL_MAP1_GRID SEGMENTS
glGet with argument GL_MAP2 GRID SEGMENTS

SEE ALSO

"glEvalCoord", "glEvalMesh" , "glEvalPoint" , "glMapl" , "glMap2"

200

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glMaterial

NAME

glMaterialf, glMateriali, giMaterialfv, glMaterialiv - specify material parameters for the lighting
model

C SPECIFICATION
void glMaterialf(GLenum face, GLenum pname, GLfloat param)

void glMateriali(GLenum face, GLenum pname, GLint param)

PARAMETERS

face

Specifies which face or faces are being updated. Must be one of GL_FRONT, GL_ BACK, or
GL_FRONT_AND_ BACK.

pname

Specifies the single-valued material parameter of the face or faces that is being updated. Must
be GL_SHININESS.

param

Specifies the value that parameter GL._SHININESS will be set to.

C SPECIFICATION
void glMaterialfv(GLenum face, GLenum pname, const GLfloat *params)

void glMaterialiv(GLenum face, GLenum pname, const GLint *params)

PARAMETERS

face

Specifies which face or faces are being updated. Must be one of GL_FRONT, GL_ BACK, or
GL_FRONT_AND_ BACK.

pname

201

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies the material parameter of the face or faces that is being updated. Must be one of
GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_EMISSION, GL_SHININESS,
GL_AMBIENT_AND_DIFFUSE, or GL_COLOR_INDEXES.

params

Specifies a pointer to the value or values that pname will be set to.

DESCRIPTION

glMaterial assigns values to material parameters. There are two matched sets of material
parameters. One, the front-facing set, is used to shade points, lines, bitmaps, and all polygons (when
two-sided lighting is disabled), or just front-facing polygons (when two-sided lighting is enabled).
The other set, back-facing, is used to shade back-facing polygons only when two-sided lighting is
enabled. Refer to the glLightModel reference page for details concerning one- and two-sided
lighting calculations.

glMaterial takes three arguments. The first, face, specifies whether the GL_ FRONT materials, the
GL_BACK materials, or both GL_ FRONT_ AND_ BACK materials will be modified. The second,
pname, specifies which of several parameters in one or both sets will be modified. The third,
params, specifies what value or values will be assigned to the specified parameter.

Material parameters are used in the lighting equation that is optionally applied to each vertex. The
equation is discussed in the glLightModel reference page. The parameters that can be specified
using glMaterial, and their interpretations by the lighting equation, are as follows:

GL_AMBIENT

params contains four integer or floating-point values that specify the ambient RGBA
reflectance of the material. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are
clamped. The default ambient reflectance for both front- and back-facing materials is (0.2, 0.2,
0.2, 1.0).

GL_DIFFUSE

params contains four integer or floating-point values that specify the diffuse RGBA
reflectance of the material. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are
clamped. The default diffuse reflectance for both front- and back-facing materials is (0.8, 0.8,
0.8, 1.0).

GL_SPECULAR

params contains four integer or floating-point values that specify the specular RGBA
reflectance of the material. Integer values are mapped linearly such that the most positive

202

OpenGL Reference Manual (Addison-Wesley Publishing Company)

representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are
clamped. The default specular reflectance for both front- and back-facing materials is (0.0,
0.0, 0.0, 1.0).

GL_EMISSION

params contains four integer or floating-point values that specify the RGBA emitted light
intensity of the material. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are
clamped. The default emission intensity for both front- and back-facing materials is (0.0, 0.0,
0.0, 1.0).

GL_SHININESS
params is a single integer or floating-point value that specifies the RGBA specular exponent
of the material. Integer and floating-point values are mapped directly. Only values in the range

[0,128] are accepted. The default specular exponent for both front- and back-facing materials
is 0.

GL_AMBIENT_AND_DIFFUSE

Equivalent to calling glMaterial twice with the same parameter values, once with
GL_AMBIENT and once with GL_DIFFUSE.

GL_COLOR_INDEXES
params contains three integer or floating-point values specifying the color indices for ambient,
diffuse, and specular lighting. These three values, and GL_SHININESS, are the only material

values used by the color index mode lighting equation. Refer to the glLightModel reference
page for a discussion of color index lighting.

NOTES
The material parameters can be updated at any time. In particular, glMaterial can be called between

a call to glBegin and the corresponding call to glEnd. If only a single material parameter is to be
changed per vertex, however, glColorMaterial is preferred over glMaterial (see "glColorMaterial"

).

ERRORS
GL_INVALID ENUM is generated if either face or pname is not an accepted value.

GL_INVALID VALUE is generated if a specular exponent outside the range [0,128] is specified.

203

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS

glGetMaterial

SEE ALSO

"glColorMaterial", "glLight" , "glLightModel"

glMatrixMode

NAME

glMatrixMode - specify which matrix is the current matrix

C SPECIFICATION

void glMatrixMode(GLenum mode)

PARAMETERS

mode

Specifies which matrix stack is the target for subsequent matrix operations. Three values are
accepted: GL_MODELVIEW, GL_PROJECTION, and GL_TEXTURE.

DESCRIPTION
glMatrixMode sets the current matrix mode. mode can assume one of three values:
GL_MODELVIEW

Applies subsequent matrix operations to the modelview matrix stack.
GL_PROJECTION

Applies subsequent matrix operations to the projection matrix stack.
GL_TEXTURE

Applies subsequent matrix operations to the texture matrix stack.

204

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS
GL_INVALID ENUM is generated if mode is not an accepted value.

GL_INVALID OPERATION is generated if glMatrixMode is called between a call to giBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ MATRIX MODE

SEE ALSO

"glL.oadMatrix", "glMatrixMode" , "glPushMatrix"

glMultMatrix

NAME

glMultMatrixd, glMultMatrixf - multiply the current matrix by an arbitrary matrix

C SPECIFICATION
void giMultMatrixd(const GLdouble *m)

void glMultMatrixf(const GLfloat *m)

PARAMETERS

Specifies a pointer a to 4 x 4 matrix stored in column-major order as sixteen consecutive
values.

DESCRIPTION

glMultMatrix multiplies the current matrix with the one specified in m. That is, if M is the current
matrix and T is the matrix passed to glMultMatrix, then M is replaced with MT.

The current matrix is the projection matrix, modelview matrix, or texture matrix, determined by the
current matrix mode (see "glMatrixMode").

205

OpenGL Reference Manual (Addison-Wesley Publishing Company)

m points to a 4 x 4 matrix of single- or double-precision floating-point values stored in column-
major order. That is, the matrix is stored as

@y @y Gg G4y

@y @5 dq Oyg

2 %5 %10 %1y
@3 @7 Gqq G435
ERRORS

GL_INVALID OPERATION is generated if gIMultMatrix is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS
glGet with argument GL_ MATRIX MODE
glGet with argument GL_ MODELVIEW_MATRIX

glGet with argument GL_ PROJECTION_MATRIX
glGet with argument GL_ TEXTURE MATRIX

SEE ALSO

"glMatrixMode", "glLoadldentity" , "glLoadMatrix" , "glPushMatrix"

glNewList

NAME

gINewList, glEndList - create or replace a display list

C SPECIFICATION

void gINewList(GLuint /ist, GLenum mode)

PARAMETERS

list

206

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies the display list name.

mode
Specifies the compilation mode, which can be GL_COMPILE or
GL_COMPILE_AND_EXECUTE.

C SPECIFICATION

void glEndList(void)

DESCRIPTION

Display lists are groups of GL commands that have been stored for subsequent execution. The
display lists are created with gINewList. All subsequent commands are placed in the display list, in
the order issued, until glEndList is called.

glNewlList has two arguments. The first argument, /ist, is a positive integer that becomes the unique
name for the display list. Names can be created and reserved with glGenLists and tested for
uniqueness with glIsList. The second argument, mode, is a symbolic constant that can assume one
of two values:

GL_COMPILE

Commands are merely compiled.
GL_COMPILE_AND EXECUTE

Commands are executed as they are compiled into the display list.
Certain commands are not compiled into the display list, but are executed immediately, regardless
of the display-list mode. These commands are gllsList, glGenLists, glDeleteLists,
glFeedbackBuffer, glSelectBuffer, glRenderMode, glReadPixels, glPixelStore, glFlush,
glFinish, gllsEnabled, and all of the glGet routines.
When glEndList is encountered, the display-list definition is completed by associating the list with

the unique name /ist (specified in the gINewList command). If a display list with name /ist already
exists, it is replaced only when glEndList is called.

NOTES

glCallList and glCallLists can be entered into display lists. The commands in the display list or
lists executed by glCallList or glCallLists are not included in the display list being created, even if
the list creation mode is GL_COMPILE_AND EXECUTE.

207

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS
GL_INVALID VALUE is generated if /ist is zero.
GL_INVALID ENUM is generated if mode is not an accepted value.

GL_INVALID OPERATION is generated if glEndList is called without a preceding glNewList,
or if glNewList is called while a display list is being defined.

GL_INVALID OPERATION is generated if gINewList is called between a call to giIBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

gllsList

SEE ALSO

"glCallList", "glCallLists" , "glDeleteLists" , "glGenLists"

glNormal

NAME

glNormal3b, giNormal3d, gINormal3f, giINormal3i, gINormal3s, giINormal3bv, gINormal3dyv,
glNormal3fv, giNormal3iv, gINormal3sv - set the current normal vector

C SPECIFICATION

void giNormal3b(GLbyte nx, GLbyte ny, GLbyte nz)

void giNormal3d(GLdouble nx, GLdouble ny, GLdouble nz)

void giNormal3f(GLfloat nx, GLfloat ny, GLfloat nz)

void gINormal3i(GLint nx, GLint ny, GLint nz)
void gINormal3s(GLshort nx, GLshort ny, GLshort nz)

PARAMETERS

nx, ny, nz

Specify the x, y, and z coordinates of the new current normal. The initial value of the current
normal is (0,0,1).

208

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

void gINormal3bv(const GLbyte *v)
void gINormal3dv(const GLdouble *v)
void gINormal3fv(const GLfloat *v)
void gINormal3iv(const GLint *v)
void gINormal3sv(const GLshort *v)

PARAMETERS

Specifies a pointer to an array of three elements: the x, y, and z coordinates of the new current
normal.

DESCRIPTION

The current normal is set to the given coordinates whenever glNormal is issued. Byte, short, or
integer arguments are converted to floating-point format with a linear mapping that maps the most
positive representable integer value to 1.0, and the most negative representable integer value to -1.0.

Normals specified with giNormal need not have unit length. If normalization is enabled, then
normals specified with glNormal are normalized after transformation. Normalization is controlled
using glEnable and glDisable with the argument GL_ NORMALIZE. By default, normalization is
disabled.

NOTES

The current normal can be updated at any time. In particular, glNormal can be called between a call
to glBegin and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_CURRENT _NORMAL
glIsEnable with argument GL_ NORMALIZE

SEE ALSO

nn " n

"glBegin", "glColor" , "glIndex" , "glTexCoord" , "glVertex"

209

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glOrtho

NAME

glOrtho - multiply the current matrix by an orthographic matrix

C SPECIFICATION
void glOrtho(GLdouble /eft, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near,
GLdouble far)
PARAMETERS
left, right
Specify the coordinates for the left and right vertical clipping planes.
bottom, top
Specity the coordinates for the bottom and top horizontal clipping planes.
near, far

Specify the distances to the nearer and farther depth clipping planes. These distances are
negative if the plane is to be behind the viewer.

DESCRIPTION

glOrtho describes a perspective matrix that produces a parallel projection. (left, bottom, -near) and
(right, top, -near) specity the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectively, assuming that the eye is located at (0, 0, 0). -far
specifies the location of the far clipping plane. Both near and far can be either positive or negative.
The corresponding matrix is

2
right - left 0 0 £
2
0 top - bottom 0 t}f
2
0 0 far -near Z
0 0 0 1

210

OpenGL Reference Manual (Addison-Wesley Publishing Company)

where

. right + left
X " right -left

top + bottom

y o top - bottom

, far +near
%~ " far-near

The current matrix is multiplied by this matrix with the result replacing the current matrix. That is,
if M is the current matrix and O is the ortho matrix, then M is replaced with M o O.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

ERRORS

GL_INVALID_OPERATION is generated if glOrtho is called between a call to glBegin and the
corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX

glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX

SEE ALSO

"glFrustum", "glMatrixMode" , "gIMultMatrix" , "glPushMatrix" , "glViewport"

glPassThrough

NAME

glPassThrough - place a marker in the feedback buffer

211

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

void glPassThrough(GLfloat token)

PARAMETERS

token

Specifies a marker value to be placed in the feedback buffer following a
GL_PASS THROUGH_TOKEN.

DESCRIPTION

Feedback is a GL render mode. The mode is selected by calling glIRenderMode with
GL_FEEDBACK. When the GL is in feedback mode, no pixels are produced by rasterization.
Instead, information about primitives that would have been rasterized is fed back to the application
using the GL. See "glFeedbackBuffer" for a description of the feedback buffer and the values in it.
glPassThrough inserts a user-defined marker in the feedback buffer when it is executed in feedback
mode. token is returned as if it were a primitive; it is indicated with its own unique identifying

value: GL_PASS THROUGH_TOKEN. The order of glPassThrough commands with respect to
the specification of graphics primitives is maintained.

NOTES

glPassThrough is ignored if the GL is not in feedback mode.

ERRORS

GL_INVALID OPERATION is generated if glPassThrough is called between a call to giBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ RENDER_MODE

SEE ALSO

"glFeedbackBuffer", "glRenderMode"

212

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glPixelMap

NAME

glPixelMapfv, glPixelMapuiv, glPixelMapusv - set up pixel transfer maps

C SPECIFICATION

void glPixelMapfv(GLenum map, GLint mapsize, const GLfloat *values)
void glPixelMapuiv(GLenum map, GLint mapsize, const GLuint *values)
void glPixelMapusv(GLenum map, GLint mapsize, const GLushort *values)

PARAMETERS

map
Specifies a symbolic map name. Must be one of the following: GL_PIXEL_MAP I TO I,
GL_PIXEL_MAP_S TO_S, GL_PIXEL MAP I TO_R, GL_PIXEL_MAP I TO G,
GL_PIXEL _MAP I TO B, GL_PIXEL MAP I TO A, GL_PIXEL MAP R TO_R,
GL_PIXEL_MAP_G TO_G, GL_PIXEL_MAP B TO_B, or
GL_PIXEL _MAP A TO_A.

mapsize
Specifies the size of the map being defined.

values

Specifies an array of mapsize values.

DESCRIPTION

glPixelMap sets up translation tables, or maps, used by glDrawPixels, glReadPixels,
glCopyPixels, glTexImagelD, and glTexImage2D. Use of these maps is described completely in
the glPixelTransfer reference page, and partly in the reference pages for the pixel and texture
image commands. Only the specification of the maps is described in this reference page.

map is a symbolic map name, indicating one of ten maps to set. mapsize specifies the number of
entries in the map, and values is a pointer to an array of mapsize map values.

The ten maps are as follows:
GL_PIXEL _MAP I TO_I
Maps color indices to color indices.

213

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_PIXEL _MAP S TO_S

Maps stencil indices to stencil indices.
GL_PIXEL _MAP I TO R

Maps color indices to red components.
GL_PIXEL_MAP I TO_G

Maps color indices to green components.
GL_PIXEL MAP 1 TO B

Maps color indices to blue components.
GL_PIXEL _MAP I TO_A

Maps color indices to alpha components.
GL_PIXEL_MAP R TO R

Maps red components to red components.
GL_PIXEL_MAP G TO G

Maps green components to green components.
GL_PIXEL _MAP B TO B

Maps blue components to blue components.
GL_PIXEL _MAP A TO_A

MapMaps alpha components to alpha components.
The entries in a map can be specified as single-precision floating-point numbers, unsigned short
integers, or unsigned long integers. Maps that store color component values (all but
GL_PIXEL MAP I TO Iand GL_PIXEL MAP_S TO S) retain their values in floating-point
format, with unspecified mantissa and exponent sizes. Floating-point values specified by
glPixelMapfv are converted directly to the internal floating-point format of these maps, then
clamped to the range [0,1]. Unsigned integer values specified by glPixelMapusv and
glPixelMapuiv are converted linearly such that the largest representable integer maps to 1.0, and
zero maps to 0.0.
Maps that store indices, GL_ PIXEL _MAP I TO Iand GL_PIXEL MAP S TO S8, retain their

values in fixed-point format, with an unspecified number of bits to the right of the binary point.
Floating-point values specified by glPixelMapfv are converted directly to the internal fixed-point

214

OpenGL Reference Manual (Addison-Wesley Publishing Company)

format of these maps. Unsigned integer values specified by glPixelMapusv and glPixelMapuiv
specify integer values, with all zeros to the right of the binary point.

The table below shows the initial sizes and values for each of the maps. Maps that are indexed by

either color or stencil indices must have mapsize = 2n for some 7 or results are undefined. The

maximum allowable size for each map depends on the implementation and can be determined by

calling glGet with argument GL_MAX PIXEL_MAP_TABLE. The single maximum applies to

all maps, and it is at least 32.

map lookup index lookup value initial size initial value
color index color index 1 0.0

GL_PIXEL_MAP I TO I

stencil index stencil index 1 0
GL_PIXEL _MAP S TO_ S

color index R 1 0.0
GL_PIXEL MAP I TO R

color index G 1 0.0
GL_PIXEL MAP I TO G

color index B 1 0.0
GL_PIXEL MAP I TO B

color index A 1 0.0
GL_PIXEL MAP I TO A

R R 1 0.0
GL_PIXEL MAP R TO R

G G 1 0.0
GL_PIXEL MAP G TO G

B B 1 0.0
GL_PIXEL MAP B TO B

A A 1 0.0

GL_PIXEL _MAP_A TO A
ERRORS
GL_INVALID ENUM is generated if map is not an accepted value.

GL_INVALID VALUE is generated if mapsize is negative or larger than
GL_MAX PIXEL_MAP TABLE.

GL_INVALID VALUE is generated if map is GL_PIXEL_MAP_I_TO I,
GL_PIXEL _MAP S TO S, GL_PIXEL MAP I TO R, GL PIXEL_MAP I TO G,

215

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_PIXEL MAP I TO B, or GL _PIXEL MAP I TO A, and mapsize is not a power of two.

GL_INVALID OPERATION is generated if glPixelMap is called between a call to giIBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glGetPixelMap

glGet with argument GL_PIXEL _MAP I TO I SIZE

glGet with argument GL_PIXEL _MAP_S TO S SIZE

glGet with argument GL_PIXEL_MAP I TO R SIZE

glGet with argument GL_PIXEL_MAP I TO G _SIZE

glGet with argument GL_ PIXEL_MAP I TO B _SIZE

glGet with argument GL_PIXEL_MAP I TO_A SIZE

glGet with argument GL_ PIXEL_MAP R TO R SIZE

glGet with argument GL_ PIXEL _MAP_G_TO_G_SIZEglGet with argument

GL_PIXEL_MAP B TO_B_SIZE
glGet with argument GL_ PIXEL_MAP A TO A SIZE
glGet with argument GL_ MAX PIXEL MAP TABLE

SEE ALSO

"glCopyPixels", "glDrawPixels" , "glPixelStore" , "glPixelTransfer" , "glReadPixels" ,
"glTexImage1D" , "glTexImage2D"

glPixelStore

NAME

glPixelStoref, glPixelStorei - set pixel storage modes

C SPECIFICATION

void glPixelStoref(GLenum pname, GLfloat param)
void glPixelStorei(GLenum pname, GLint param)

PARAMETERS

pname

Specifies the symbolic name of the parameter to be set. Six values affect the packing of pixel

216

OpenGL Reference Manual (Addison-Wesley Publishing Company)

data into memory: GL_PACK SWAP_BYTES, GL_PACK LSB_FIRST,

GL_PACK ROW_LENGTH, GL_PACK SKIP_PIXELS, GL_PACK SKIP ROWS,
and GL_PACK ALIGNMENT. Six more affect the unpacking of pixel data from memory:
GL_UNPACK_SWAP_BYTES, GL_UNPACK LSB_FIRST,
GL_UNPACK_ROW_LENGTH, GL_UNPACK_SKIP_ PIXELS,
GL_UNPACK_SKIP_ROWS, and GL_UNPACK_ALIGNMENT.

param

Specifies the value that pname is set to.

DESCRIPTION

glPixelStore sets pixel storage modes that affect the operation of subsequent glDrawPixels and
glReadPixels as well as the unpacking of polygon stipple patterns (see "glPolygonStipple"),
bitmaps (see "glBitmap"), and texture patterns (see "glTexImagel D" and "glTexImage2D").

pname is a symbolic constant indicating the parameter to be set, and param is the new value. Six of
the twelve storage parameters affect how pixel data is returned to client memory, and are therefore
significant only for glReadPixels commands. They are as follows:

GL_PACK_SWAP BYTES

If true, byte ordering for multibyte color components, depth components, color indices, or
stencil indices is reversed. That is, if a four-byte component is made up of bytes 50, b1, b2,
b3, it is stored in memory as b3, b2, b1, b0 if GL_PACK SWAP_BYTES is true.
GL_PACK SWAP BYTES has no effect on the memory order of components within a
pixel, only on the order of bytes within components or indices. For example, the three
components of a GL_RGB format pixel are always stored with red first, green second, and
blue third, regardless of the value of GL_ PACK SWAP_BYTES.

GL_PACK LSB _FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise, the
first bit in each byte is the most significant one. This parameter is significant for bitmap data
only.

GL_PACK ROW_LENGTH
If greater than zero, GL_ PACK_ROW_LENGTH defines the number of pixels in a row. If

the first pixel of a row is placed at location p in memory, then the location of the first pixel of
the next row is obtained by skipping

217

OpenGL

Reference Manual (Addison-Wesley Publishing Company)

-

nl $2a
d s_nl s<d
s| a

N

components or indices, where # is the number of components or indices in a pixel, / is the
number of pixels in a row (GL_ PACK _ROW_LENGTH if it is greater than zero, the width
argument to the pixel routine otherwise), a is the value of GL_ PACK_ALIGNMENT, and s
is the size, in bytes, of a single component (if a < s, then it is as if a = s). In the case of 1-bit
values, the location of the next row is obtained by skipping

nl

k=8a| —

8a

components or indices.

The word component in this description refers to the nonindex values red, green, blue, alpha,
and depth. Storage format GL_RGB, for example, has three components per pixel: first red,
then green, and finally blue.

GL_PACK_SKIP_PIXELS and GL_PACK_SKIP_ROWS

These values are provided as a convenience to the programmer; they provide no functionality
that cannot be duplicated simply by incrementing the pointer passed to glReadPixels. Setting
GL_PACK_SKIP_PIXELS to i is equivalent to incrementing the pointer by i » components
or indices, where 7 is the number of components or indices in each pixel. Setting
GL_PACK_SKIP_ROWS to is equivalent to incrementing the pointer by j £ components or
indices, where k& is the number of components or indices per row, as computed above in the
GL_PACK_ROW_LENGTH section.

GL_PACK_ALIGNMENT

Specifies the alignment requirements for the start of each pixel row in memory. The allowable
values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word alignment),
and 8 (rows start on double-word boundaries).

The other six of the twelve storage parameters affect how pixel data is read from client memory.
These values are significant for giDrawPixels, glTexImagelD, glTexImage2D, glBitmap, and
glPolygonStipple. They are as follows:

GL_UNPACK_SWAP BYTES

218

OpenGL Reference Manual (Addison-Wesley Publishing Company)

If true, byte ordering for multibyte color components, depth components, color indices, or
stencil indices is reversed. That is, if a four-byte component is made up of bytes 50, b1, b2,
b3, it is taken from memory as b3, b2, b1, b0 if GL_UNPACK SWAP_ BYTES is true.
GL_UNPACK SWAP_ BYTES has no effect on the memory order of components within a
pixel, only on the order of bytes within components or indices. For example, the three
components of a GL_RGB format pixel are always stored with red first, green second, and
blue third, regardless of the value of GL_UNPACK_SWAP BYTES.

GL_UNPACK_LSB_FIRST

If true, bits are ordered within a byte from least significant to most significant; otherwise, the
first bit in each byte is the most significant one. This is significant for bitmap data only.

GL_UNPACK ROW_LENGTH

If greater than zero, GL_UNPACK ROW_LENGTH defines the number of pixels in a row.
If the first pixel of a row is placed at location p in memory, then the location of the first pixel
of the next row is obtained by skipping

-

nl $2a
d s_nl s<d
s| a

N

components or indices, where # is the number of components or indices in a pixel, / is the
number of pixels in a row (GL_UNPACK_ ROW_LENGTH if it is greater than zero, the
width argument to the pixel routine otherwise), a is the value of

GL_UNPACK ALIGNMENT, and s is the size, in bytes, of a single component (if a < s,
then it is as if @ = 5). In the case of 1-bit values, the location of the next row is obtained by

skipping

nl

k=8a| —

8a

components or indices.

The word component in this description refers to the nonindex values red, green, blue, alpha,
and depth. Storage format GL_RGB, for example, has three components per pixel: first red,
then green, and finally blue.

219

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_UNPACK_SKIP PIXELS and GL_UNPACK_SKIP ROWS

These values are provided as a convenience to the programmer; they provide no functionality
that cannot be duplicated simply by incrementing the pointer passed to gIDrawPixels,
glTexImagelD, glTexImage2D, gilBitmap, or glPolygonStipple. Setting
GL_UNPACK SKIP PIXELS to i is equivalent to incrementing the pointer by i n
components or indices, where # is the number of components or indices in each pixel. Setting
GL_UNPACK SKIP _ROWS to is equivalent to incrementing the pointer by j k
components or indices, where £ is the number of components or indices per row, as computed
above in the GL_UNPACK ROW_LENGTH section.

GL_UNPACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The allowable
values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word alignment),

and 8 (rows start on double-word boundaries).

The following table gives the type, initial value, and range of valid values for each of the storage
parameters that can be set with glPixelStore.

pname type initial value valid range
GL_PACK SWAP BYTES Boolean false true or false
GL_PACK LSB FIRST Boolean false true or false
GL_PACK ROW_LENGTH integer 0 [0, inf)
GL_PACK_SKIP_ROWS integer 0 [0, inf)
GL_PACK SKIP_PIXELS integer 0 [0, inf)
GL_PACK _ALIGNMENT integer 4 1,2,4,0r8
GL_UNPACK SWAP BYTES Boolean false true or false
GL_UNPACK LSB FIRST Boolean false true or false
GL_UNPACK_ROW_LENGTH integer 0 [0, inf)
GL_UNPACK _SKIP_ROWS integer 0 [0, inf)
GL_UNPACK SKIP_PIXELS integer 0 [0, inf)
GL_UNPACK_ALIGNMENT integer 4 1,2,4,0r8

glPixelStoref can be used to set any pixel store parameter. If the parameter type is Boolean, then if
param is 0.0, the parameter is false; otherwise it is set to true. If pname is a integer type parameter,
param is rounded to the nearest integer.

Likewise, glPixelStorei can also be used to set any of the pixel store parameters. Boolean
parameters are set to false if param is 0 and true otherwise. param is converted to floating point
before being assigned to real-valued parameters.

NOTES

The pixel storage modes in effect when glDrawPixels, glReadPixels, glTexImagelD,
glTexImage2D, glBitmap, or glPolygonStipple is placed in a display list control the interpretation
of memory data. The pixel storage modes in effect when a display list is executed are not
significant.

220

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS
GL_INVALID ENUM is generated if pname is not an accepted value.

GL_INVALID VALUE is generated if a negative row length, pixel skip, or row skip value is
specified, or if alignment is specified as other than 1, 2, 4, or 8.

GL_INVALID OPERATION is generated if glPixelStore is called between a call to giBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ PACK_SWAP_BYTES
glGet with argument GL_ PACK _LSB_FIRST

glGet with argument GL_ PACK_ROW_LENGTH
glGet with argument GL_ PACK _SKIP_ROWS
glGet with argument GL_ PACK_SKIP_ PIXELS
glGet with argument GL_ PACK_ALIGNMENT
glGet with argument GL_UNPACK _SWAP BYTES
glGet with argument GL_UNPACK _LSB_FIRST
glGet with argument GL_UNPACK _ROW_LENGTH
glGet with argument GL_UNPACK_SKIP_ROWS
glGet with argument GL_ UNPACK_SKIP_ PIXELS
glGet with argument GL_UNPACK ALIGNMENT

SEE ALSO

"glBitmap", "glDrawPixels" , "glPixelMap" , "glPixelTransfer" , "glPixelZoom" ,
"glPolygonStipple" , "glReadPixels" , "glTexImagelD" , "glTexImage2D"

glPixelTransfer

NAME

glPixelTransferf, glPixel Transferi - set pixel transfer modes

C SPECIFICATION

void glPixelTransferf(GLenum pname, GLfloat param)
void glPixelTransferi(GLenum pname, GLint param)

221

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS

pname

Specifies the symbolic name of the pixel transfer parameter to be set. Must be one of the
following: GL_MAP_COLOR, GL_MAP_STENCIL, GL_INDEX SHIFT,
GL_INDEX OFFSET, GL_RED _SCALE, GL_RED_ BIAS, GL_GREEN_SCALE,
GL_GREEN_BIAS, GL_BLUE_SCALE, GL_BLUE_BIAS, GL_ALPHA _SCALE,
GL_ALPHA_BIAS, GL_DEPTH_SCALE, or GL_DEPTH_BIAS.

param

Specifies the value that pname is set to.

DESCRIPTION

glPixelTransfer sets pixel transfer modes that affect the operation of subsequent giDrawPixels,
glReadPixels, glCopyPixels, glTexImagelD, and glTexImage2D commands. The algorithms that
are specified by pixel transfer modes operate on pixels after they are read from the frame buffer
(glReadPixels and glCopyPixels) or unpacked from client memory (glDrawPixels,
glTexImagelD, and glTexImage2D). Pixel transfer operations happen in the same order, and in the
same manner, regardless of the command that resulted in the pixel operation. Pixel storage modes
(see "glPixelStore") control the unpacking of pixels being read from client memory, and the
packing of pixels being written back into client memory.

Pixel transfer operations handle four fundamental pixel types: color, color index, depth, and stencil.
Color pixels are made up of four floating-point values with unspecified mantissa and exponent
sizes, scaled such that 0.0 represents zero intensity and 1.0 represents full intensity. Color indices
comprise a single fixed-point value, with unspecified precision to the right of the binary point.
Depth pixels comprise a single floating-point value, with unspecified mantissa and exponent sizes,
scaled such that 0.0 represents the minimum depth buffer value, and 1.0 represents the maximum
depth buffer value. Finally, stencil pixels comprise a single fixed-point value, with unspecified
precision to the right of the binary point.

The pixel transfer operations performed on the four basic pixel types are as follows:
Color

Each of the four color components is multiplied by a scale factor, then added to a bias factor.
That is, the red component is multiplied by GL_RED_SCALE, then added to

GL_RED BIAS; the green component is multiplied by GL_GREEN_SCALE, then added to
GL_GREEN_BIAS; the blue component is multiplied by GL_BLUE_SCALE, then added
to GL_BLUE_BIAS; and the alpha component is multiplied by GL_ALPHA SCALE, then
added to GL_ALPHA BIAS. After all four color components are scaled and biased, each is
clamped to the range [0,1]. All color scale and bias values are specified with glPixelTransfer.

If GL_MAP_COLOR is true, each color component is scaled by the size of the

222

OpenGL Reference Manual (Addison-Wesley Publishing Company)

corresponding color-to-color map, then replaced by the contents of that map indexed by the
scaled component. That is, the red component is scaled by
GL_PIXEL _MAP R TO_R_SIZE, then replaced by the contents of
GL_PIXEL _MAP R TO_R indexed by itself. The green component is scaled by
GL_PIXEL _MAP_G TO_G_SIZE, then replaced by the contents of

GL_PIXEL MAP_G TO_G indexed by itself. The blue component is scaled by
GL_PIXEL _MAP B TO B SIZE, then replaced by the contents of
GL_PIXEL _MAP B TO B indexed by itself. And the alpha component is scaled by
GL_PIXEL MAP A TO_ A _SIZE, then replaced by the contents of
GL_PIXEL MAP A TO_A indexed by itself. All components taken from the maps are then
clamped to the range [0,1]. GL_MAP_COLOR is specified with glPixelTransfer. The
contents of the various maps are specified with glPixelMap.

Color index

Each color index is shifted left by GL_INDEX SHIFT bits, filling with zeros any bits
beyond the number of fraction bits carried by the fixed-point index. If GL_INDEX_ SHIFT is
negative, the shift is to the right, again zero filled. Then GL_INDEX OFFSET is added to
the index. GL_INDEX SHIFT and GL_INDEX OFFSET are specified with
glPixelTransfer.

From this point, operation diverges depending on the required format of the resulting pixels. If
the resulting pixels are to be written to a color index buffer, or if they are being read back to
client memory in GL_COLOR_INDEX format, the pixels continue to be treated as indices.
If GL_MAP_COLOR is true, each index is masked by 2n - 1, where n is
GL_PIXEL _MAP I TO I SIZE, then replaced by the contents of
GL_PIXEL _MAP I TO I indexed by the masked value. GL_MAP_COLOR is specified
with glPixelTransfer. The contents of the index map are specified with glPixelMap.

If the resulting pixels are to be written to an RGBA color buffer, or if they are being read back
to client memory in a format other than GL_COLOR_INDEX, the pixels are converted from
indices to colors by referencing the four maps GL_ PIXEL_ MAP I TO R,
GL_PIXEL_MAP_I TO_G, GL_PIXEL_MAP_I TO_B, and
GL_PIXEL _MAP I TO_A. Before being dereferenced, the index is masked by 2n - 1,
where n is GL_PIXEL_MAP I TO_R SIZE for the red map,

GL_PIXEL_MAP_I TO_G_SIZE for the green map, GL_PIXEL_MAP_I TO_B _SIZE
for the blue map, and GL_PIXEL_MAP I TO A SIZE for the alpha map. All components
taken from the maps are then clamped to the range [0,1]. The contents of the four maps are
specified with glPixelMap.

Depth

Each depth value is multiplied by GL_ DEPTH_SCALE, added to GL_ DEPTH_BIAS, then
clamped to the range [0,1].

Stencil

223

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Each index is shifted GL_INDEX SHIFT bits just as a color index is, then added to
GL_INDEX OFFSET. If GL_MAP_STENCIL is true, each index is masked by 2n - 1,
where n is GL_PIXEL_MAP_S TO_S SIZE, then replaced by the contents of
GL_PIXEL _MAP_S TO S indexed by the masked value.

The following table gives the type, initial value, and range of valid values for each of the pixel

transfer parameters that are set with glPixelTransfer.

pname type initial value valid range
Boolean false true/false

GL_MAP_COLOR

Boolean false true/false
GL_MAP_STENCIL

integer 0 (-inf, inf)
GL_INDEX SHIFT
GL_INDEX OFFSET integer 0 (-inf, inf)
GL_RED SCALE float 1.0 (-inf, inf)
GL_GREEN_SCALE float 1.0 (-inf, inf)
GL_BLUE_SCALE float 1.0 (-inf, inf)
GL_ALPHA SCALE float 1.0 (-inf, inf)
GL_DEPTH_SCALE float 1.0 (-inf, inf)
GL_RED BIAS float 0.0 (-inf, inf)
GL_GREEN_BIAS float 0.0 (-inf, inf)
GL_BLUE_BIAS float 0.0 (-inf, inf)
GL_ALPHA BIAS float 0.0 (-inf, inf)
GL_DEPTH_BIAS float 0.0 (-inf, inf)

glPixelTransferf can be used to set any pixel transfer parameter. If the parameter type is Boolean,
0.0 implies false and any other value implies true. If pname is an integer parameter, param is
rounded to the nearest integer.

Likewise, glPixelTransferi can also be used to set any of the pixel transfer parameters. Boolean

parameters are set to false if param is 0 and true otherwise. param is converted to floating point
before being assigned to real-valued parameters.

NOTES

If a gDrawPixels, glReadPixels, glCopyPixels, glITexImagelD, or glTexImage2D command is
placed in a display list (see "gINewList" and "glCallList"), the pixel transfer mode settings in effect
when the display list is executed are the ones that are used. They may be different from the settings
when the command was compiled into the display list.

ERRORS

GL_INVALID ENUM is generated if pname is not an accepted value.

224

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_INVALID OPERATION is generated if glPixelTransfer is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ MAP_COLOR
glGet with argument GL_ MAP_STENCIL
glGet with argument GL_INDEX SHIFT
glGet with argument GL_INDEX OFFSET
glGet with argument GL_RED _SCALE
glGet with argument GL_RED_BIAS
glGet with argument GL_ GREEN_SCALE
glGet with argument GL_GREEN_BIAS
glGet with argument GL_ BLUE_SCALE
glGet with argument GL_ BLUE_BIAS
glGet with argument GL_ ALPHA SCALE
glGet with argument GL_ ALPHA BIAS
glGet with argument GL_ DEPTH_SCALE
glGet with argument GL_ DEPTH_BIAS

SEE ALSO

"glCallList", "glCopyPixels" , "glDrawPixels" , "gINewList" , "glPixelMap" , "glPixelStore" ,
"glPixelZoom" , "glReadPixels" , "glTexImage1D" , "glTexImage2D"

glPixelZoom

NAME

glPixelZoom - specify the pixel zoom factors

C SPECIFICATION

void glPixelZoom(GLfloat xfactor, GLfloat yfactor)

PARAMETERS

xfactor, yfactor

Specify the x and y zoom factors for pixel write operations.

225

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

glPixelZoom specifies values for the x and y zoom factors. During the execution of giDrawPixels
or glCopyPixels, if (xr, yr) is the current raster position, and a given element is in the nth row and
mth column of the pixel rectangle, then pixels whose centers are in the rectangle with corners at
(xr + n -xfactor, yr + m -yfactor)

(xr + (n+1) xfactor, yr + (m+1) -yfactor)

are candidates for replacement. Any pixel whose center lies on the bottom or left edge of this
rectangular region is also modified.

Pixel zoom factors are not limited to positive values. Negative zoom factors reflect the resulting
image about the current raster position.

ERRORS

GL_INVALID OPERATION is generated if glPixelZoom is called between a call to gilBegin and
the corresponding call to glglEnd.

ASSOCIATED GETS

glGet with argument GL_ZOOM_X
glGet with argument GL_ZOOM_Y

SEE ALSO

nn

"glCopyPixels", "glDrawPixels"

glPointSize

NAME

glPointSize - specify the diameter of rasterized points

C SPECIFICATION

void glPointSize(GLfloat size)

226

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
size

Specifies the diameter of rasterized points. The default is 1.0.

DESCRIPTION

glPointSize specifies the rasterized diameter of both aliased and antialiased points. Using a point
size other than 1.0 has different effects, depending on whether point antialiasing is enabled. Point
antialiasing is controlled by calling glEnable and glDisable with argument
GL_POINT_SMOOTH.

If point antialiasing is disabled, the actual size is determined by rounding the supplied size to the
nearest integer. (If the rounding results in the value 0, it is as if the point size were 1.) If the rounded
size is odd, then the center point (x , y) of the pixel fragment that represents the point is computed
as

(L xwl+5, Lyw]+.5)

where w subscripts indicate window coordinates. All pixels that lie within the square grid of the
rounded size centered at (x , y) make up the fragment. If the size is even, the center point is

(L x+.5], Lyut5])

and the rasterized fragment's centers are the half-integer window coordinates within the square of
the rounded size centered at (x, y). All pixel fragments produced in rasterizing a nonantialiased
point are assigned the same associated data, that of the vertex corresponding to the point.

If antialiasing is enabled, then point rasterization produces a fragment for each pixel square that
intersects the region lying within the circle having diameter equal to the current point size and
centered at the point's (xw , yw). The coverage value for each fragment is the window coordinate
area of the intersection of the circular region with the corresponding pixel square. This value is
saved and used in the final rasterization step. The data associated with each fragment is the data
associated with the point being rasterized.

Not all sizes are supported when point antialiasing is enabled. If an unsupported size is requested,
the nearest supported size is used. Only size 1.0 is guaranteed to be supported; others depend on the
implementation. The range of supported sizes and the size difference between supported sizes

within the range can be queried by calling glGet with arguments GL_POINT_SIZE_RANGE and
GL_POINT_SIZE_GRANULARITY.

NOTES

The point size specified by glPointSize is always returned when GL_POINT_SIZE is queried.

227

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Clamping and rounding for aliased and antialiased points have no effect on the specified value.
Non-antialiased point size may be clamped to an implementation-dependent maximum. Although

this maximum cannot be queried, it must be no less than the maximum value for antialiased points,
rounded to the nearest integer value.

ERRORS
GL_INVALID VALUE is generated if size is less than or equal to zero.

GL_INVALID OPERATION is generated if glPointSize is called between a call to giBegin and
the corresponding call to glEnd.

ASSOCIATED GETS
glGet with argument GL_ POINT_SIZE
glGet with argument GL_ POINT _SIZE RANGE

glGet with argument GL_POINT_SIZE _GRANULARITY
glIsEnabled with argument GL_ POINT SMOOTH

SEE ALSO

"glEnable", glPointSmooth

glPolygonMode

NAME

glPolygonMode - select a polygon rasterization mode

C SPECIFICATION

void glPolygonMode(GLenum face, GLenum mode)

PARAMETERS

face

Specifies the polygons that mode applies to. Must be GL_ FRONT for front-facing polygons,
GL_BACK for back-facing polygons, or GL_FRONT_AND_BACK for front- and back-
facing polygons.

228

OpenGL Reference Manual (Addison-Wesley Publishing Company)

mode

Specifies the way polygons will be rasterized. Accepted values are GL_POINT, GL._LINE,
and GL_FILL. The default is GL_FILL for both front- and back-facing polygons.

DESCRIPTION

glPolygonMode controls the interpretation of polygons for rasterization. face describes which
polygons mode applies to: front-facing polygons (GL_FRONT), back-facing polygons
(GL_BACK), or both (GL_FRONT_AND BACK). The polygon mode affects only the final
rasterization of polygons. In particular, a polygon's vertices are lit and the polygon is clipped and
possibly culled before these modes are applied.

Three modes are defined and can be specified in mode:

GL_POINT
Polygon vertices that are marked as the start of a boundary edge are drawn as points. Point
attributes such as GL_ POINT_SIZE and GL_POINT_SMOOTH control the rasterization
of the points. Polygon rasterization attributes other than GL_ POLYGON_MODE have no
effect.

GL_LINE
Boundary edges of the polygon are drawn as line segments. They are treated as connected line
segments for line stippling; the line stipple counter and pattern are not reset between segments
(see "glLineStipple"). Line attributes such as GL_LINE _WIDTH and
GL_LINE _SMOOTH control the rasterization of the lines. Polygon rasterization attributes
other than GL_ POLYGON_MODE have no effect.

GL_FILL
The interior of the polygon is filled. Polygon attributes such as GL_ POLYGON_STIPPLE
and GL_POLYGON_SMOOTH control the rasterization of the polygon.

EXAMPLES

To draw a surface with filled back-facing polygons and outlined front-facing polygons, call

glPolygonMode (GL FRONT, GL LINE);

NOTES

Vertices are marked as boundary or nonboundary with an edge flag. Edge flags are generated
internally by the GL when it decomposes polygons, and they can be set explicitly using glEdgeFlag.

229

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS
GL_INVALID ENUM is generated if either face or mode is not an accepted value.

GL_INVALID OPERATION is generated if glPolygonMode is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ POLYGON_MODE

SEE ALSO

"glBegin", "glEdgeFlag" , "glLineStipple" , "glLineWidth" , "glPointSize" , "glPolygonStipple"

glPolygonStipple

NAME

glPolygonStipple - set the polygon stippling pattern

C SPECIFICATION

void glPolygonStipple(const GLubyte *mask)

PARAMETERS

mask

Specifies a pointer to a 32 x 32 stipple pattern that will be unpacked from memory in the same
way that glDrawPixels unpacks pixels.

DESCRIPTION

Polygon stippling, like line stippling (see "glLineStipple"), masks out certain fragments produced
by rasterization, creating a pattern. Stippling is independent of polygon antialiasing.

mask is a pointer to a 32 x 32 stipple pattern that is stored in memory just like the pixel data
supplied to a gIDrawPixels with height and width both equal to 32, a pixel format of
GL_COLOR_INDEX, and data fype of GL_BITMAP. That is, the stipple pattern is represented as
a 32 x 32 array of 1-bit color indices packed in unsigned bytes. glPixelStore parameters like

230

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_UNPACK SWAP BYTES and GL_UNPACK LSB_FIRST affect the assembling of the
bits into a stipple pattern. Pixel transfer operations (shift, offset, pixel map) are not applied to the
stipple image, however.

Polygon stippling is enabled and disabled with glEnable and glDisable, using argument
GL_POLYGON_STIPPLE. If enabled, a rasterized polygon fragment with window coordinates
xw and yw is sent to the next stage of the GL if and only if the (xw mod 32)th bit in the (yw mod
32)th row of the stipple pattern is one. When polygon stippling is disabled, it is as if the stipple
pattern were all ones.

ERRORS

GL_INVALID OPERATION is generated if glPolygonStipple is called between a call to
glBegin and the corresponding call to glEnd.

ASSOCIATED GETS

glGetPolygonStipple
glIsEnabled with argument GL_ POLYGON_STIPPLE

SEE ALSO

nn n n " n

"glDrawPixels", "glLineStipple" , "glPixelStore" , "glPixel Transfer"

glPushAttrib

NAME

glPushAttrib, glPopAttrib - push and pop the attribute stack

C SPECIFICATION

void glPushAttrib(GLbitfield mask)

PARAMETERS

mask

Specifies a mask that indicates which attributes to save. Values for mask are listed in the table
below.

231

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

void glPopAttrib(void)

DESCRIPTION

glPushA(ttrib takes one argument, a mask that indicates which groups of state variables to save on
the attribute stack. Symbolic constants are used to set bits in the mask. mask is typically constructed
by ORing several of these constants together. The special mask GL_ALL_ATTRIB_BITS can be
used to save all stackable states.

The symbolic mask constants and their associated GL state are as follows (the second column lists
which attributes are saved):

GL_ACCUM_BUFFER BIT
Accumulation buffer clear value
GL_COLOR_BUFFER BIT

GL_ALPHA_TEST enable bitAlpha test function and reference valueGL_BLEND enable
bitBlending source and destination functionsGL_DITHER enable bitGL_DRAW_BUFFER
settingGL_LOGIC_OP enable bitLogic op functionColor mode and index mode clear
valuesColor mode and index mode writemasks

GL_CURRENT BIT

Current RGBA colorCurrent color indexCurrent normal vectorCurrent texture
coordinatesCurrent raster positionGL_CURRENT _RASTER_POSITION_ VALID
flagRGBA color associated with current raster positionColor index associated with current
raster positionTexture coordinates associated with current raster positionGL_EDGE_FLAG
flag

GL_DEPTH_BUFFER_BIT

GL_DEPTH_TEST enable bitDepth buffer test functionDepth buffer clear
valueGL_DEPTH_WRITEMASK enable bit

GL_ENABLE_BIT

GL_ALPHA _TEST flagGL_AUTO _NORMAL flagGL_BLEND flagEnable bits for the
user-definable clipping planesGL._ COLOR_MATERIAL

GL_CULL_FACE flagGL_DEPTH_TEST flagGL_DITHER flagGL_FOG
flagGL_LIGHT: where 0 <= i<GL_MAX_ LIGHTS

GL_LIGHTING flagGL_LINE_SMOOTH flagGL_LINE_STIPPLE
flagGL_LOGIC_OP flagGL_MAP1 x where x is a map typeGL_MAP2_x where x is a map
typeGL_NORMALIZE flagGL_POINT_SMOOTH flagGL_POLYGON_SMOOTH
flagGL_POLYGON_STIPPLE flagGL_SCISSOR_TEST flagGL_STENCIL_TEST

232

OpenGL Reference Manual (Addison-Wesley Publishing Company)

flagGL_TEXTURE 1D flagGL_TEXTURE_ 2D flagFlags GL_TEXTURE_GEN _x where
xis S, T,R, or Q

GL_EVAL BIT

GL_MAP1_x enable bits, where x is a map typeGL_MAP2_x enable bits, where x is a map
typel-D grid endpoints and divisions2-D grid endpoints and divisionsGL_ AUTO_NORMAL
enable bit

GL_FOG _BIT

GL_FOG enable flagFog colorFog densityLinear fog startLinear fog endFog
indexGL_FOG_MODE value

GL_HINT BIT

GL_PERSPECTIVE_CORRECTION_HINT settingGL_POINT_SMOOTH_HINT
settingGL_LINE_SMOOTH_HINT settingGL_ POLYGON_SMOOTH_HINT
settingGL._FOG_HINT setting

GL_LIGHTING_BIT

GL_COLOR_MATERIAL enable bitGL_COLOR_MATERIAL_FACE valueColor
material parameters that are tracking the current colorAmbient scene

colorGL_LIGHT MODEL_LOCAL_VIEWER

valueGL_LIGHT _MODEL_TWO_SIDE settingGL_LIGHTING enable bitEnable bit for
each lightAmbient, diffuse, and specular intensity for each lightDirection, position, exponent,
and cutoff angle for each lightConstant, linear, and quadratic attenuation factors for each
lightAmbient, diffuse, specular, and emissive color for each material Ambient, diffuse, and
specular color indices for each materialSpecular exponent for each

materialGL_SHADE MODEL setting

GL_LINE_BIT

GL_LINE SMOOTH flagGL_LINE_STIPPLE enable bitLine stipple pattern and repeat
counterLine width

GL_LIST BIT
GL_LIST BASE setting
GL_PIXEL_MODE_BIT

GL_RED BIAS and GL_RED_SCALE settingsGL_GREEN_BIAS and
GL_GREEN_SCALE valuesGL_BLUE_BIAS and GL_BLUE_SCALE
GL_ALPHA_BIAS and GL_ALPHA SCALE

GL_DEPTH_BIAS and GL_DEPTH_SCALE

GL_INDEX_OFFSET and GL_INDEX_SHIFT valuesGL_MAP_COLOR and
GL_MAP_STENCIL flagsGL_ZOOM_X and GL_ZOOM_Y

233

OpenGL Reference Manual (Addison-Wesley Publishing Company)

factorsGL._ READ BUFFER settingGL x where x is a pixal map table nameGL x SIZE
where x is a pixal map table name

GL_POINT _BIT
GL_POINT_SMOOTH flagPoint size

GL_POLYGON_BIT
GL_CULL_FACE enable bitGL_CULL_FACE_MODE valueGL_FRONT_FACE
indicatorGL_POLYGON_MODE settingGL_ POLYGON_SMOOTH
flagGL_POLYGON_STIPPLE enable bit

GL_POLYGON_STIPPLE BIT
Polygon stipple image

GL_SCISSOR_BIT
GL_SCISSOR_TEST flagScissor box

GL_STENCIL_BUFFER BIT
GL_STENCIL_TEST enable bitStencil function and reference valueStencil value
maskStencil fail, pass, and depth buffer pass actionsStencil buffer clear valueStencil buffer
writemask

GL_TEXTURE_BIT
Enable bits for the four texture coordinatesBorder color for each texture imageMinification
function for each texture imageMagnification function for each texture imageTexture
coordinates and wrap mode for each texture imageColor and mode for each texture
environmentEnable bits GL_ TEXTURE_GEN x, xis S, T, R, and Q
GL_TEXTURE_GEN_MODE setting for S, T, R, and Q
glTexGen plane equations for S, T, R, and Q

GL_TRANSFORM_BIT

Coefficients of the six clipping planesEnable bits for the user-definable clipping
planesGL_MATRIX_ MODE valueGL_NORMALIZE flag

GL_VIEWPORT_BIT
Depth range (near and far)Viewport origin and extent

glPopAttrib restores the values of the state variables saved with the last glPushAttrib command.
Those not saved are left unchanged.

It is an error to push attributes onto a full stack, or to pop attributes off an empty stack. In either

234

OpenGL Reference Manual (Addison-Wesley Publishing Company)

case, the error flag is set and no other change is made to GL state.

Initially, the attribute stack is empty.

NOTES

Not all values for GL state can be saved on the attribute stack. For example, pixel pack and unpack
state, render mode state, and select and feedback state cannot be saved.

The depth of the attribute stack depends on the implementation, but it must be at least 16.

ERRORS
GL_STACK OVERFLOW is generated if glPushAttrib is called while the attribute stack is full.

GL_STACK UNDERFLOW is generated if glPopAttrib is called while the attribute stack is
empty.

GL_INVALID OPERATION is generated if glPushAttrib is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ATTRIB_STACK DEPTH.
glGet with argument GL_MAX ATTRIB_STACK DEPTH.

SEE ALSO

"glGet", "glGetClipPlane" , "glGetError" , "glGetLight" , "glGetMap" , "glGetMaterial" ,
"glGetPixelMap" , "glGetPolygonStipple" , "glGetString" , "glGetTexEnv" , "glGetTexGen" ,

" n

"glGetTexImage" , "glGetTexLevelParameter" , "glGetTexParameter" , "gllsEnabled"

glPushMatrix

NAME

glPushMatrix, glPopMatrix - push and pop the current matrix stack

C SPECIFICATION

void glPushMatrix(void)

235

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

void glPopMatrix(void)

DESCRIPTION

There is a stack of matrices for each of the matrix modes. In GL_ MODELVIEW mode, the stack
depth is at least 32. In the other two modes, GL_ PROJECTION and GL._ TEXTURE, the depth is
at least 2. The current matrix in any mode is the matrix on the top of the stack for that mode.

glPushMatrix pushes the current matrix stack down by one, duplicating the current matrix. That is,
after a glPushMatrix call, the matrix on the top of the stack is identical to the one below it.

glPopMatrix pops the current matrix stack, replacing the current matrix with the one below it on
the stack.

Initially, each of the stacks contains one matrix, an identity matrix.

It is an error to push a full matrix stack, or to pop a matrix stack that contains only a single matrix.
In either case, the error flag is set and no other change is made to GL state.

ERRORS

GL_STACK OVERFLOW is generated if glPushMatrix is called while the current matrix stack
is full.

GL_STACK UNDERFLOW is generated if glPopMatrix is called while the current matrix stack
contains only a single matrix.

GL_INVALID OPERATION is generated if glPushMatrix is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ MATRIX MODE

glGet with argument GL_ MODELVIEW_MATRIX

glGet with argument GL_ PROJECTION_MATRIX

glGet with argument GL_ TEXTURE MATRIX

glGet with argument GL_MODELVIEW_STACK DEPTH

glGet with argument GL_PROJECTION_STACK DEPTH

glGet with argument GL_TEXTURE_STACK DEPTH

glGet with argument GL_MAX MODELVIEW_STACK DEPTH
glGet with argument GL_MAX PROJECTION _STACK DEPTH
glGet with argument GL_MAX TEXTURE_STACK DEPTH

236

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

"glFrustum", "glLoadldentity" , "glLoadMatrix" , "glMatrixMode" , "gIMultMatrix" , "glOrtho" ,
"glRotate" , "glScale" , "glTranslate" , "glViewport"

glPushName

NAME

glPushName, glPopName - push and pop the name stack

C SPECIFICATION

void glPushName(GLuint name)

PARAMETERS

name

Specifies a name that will be pushed onto the name stack.

C SPECIFICATION

void glPopName(void)

DESCRIPTION

The name stack is used during selection mode to allow sets of rendering commands to be uniquely
identified. It consists of an ordered set of unsigned integers. glPushName causes name to be pushed
onto the name stack, which is initially empty. glPopName pops one name off the top of the stack.

It is an error to push a name onto a full stack, or to pop a name off an empty stack. It is also an error
to manipulate the name stack between a call to glBegin and the corresponding call to glEnd. In any
of these cases, the error flag is set and no other change is made to GL state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glPushName
or glPopName while the render mode is not GL_SELECT are ignored.

ERRORS

GL_STACK OVERFLOW is generated if glPushName is called while the name stack is full.

237

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_STACK UNDERFLOW is generated if glPopName is called while the name stack is empty.

GL_INVALID OPERATION is generated if glPushName or glPopName is called between a call
to glBegin and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ NAME_STACK DEPTH
glGet with argument GL_MAX NAME STACK DEPTH

SEE ALSO

"glInitNames", "glLoadName" , "glRenderMode" , "glSelectBuffer"

glRasterPos

NAME

glRasterPos2d, glRasterPos2f, glRasterPos2i, glRasterPos2s, glRasterPos3d, glRasterPos3f,
glRasterPos3i, glRasterPos3s, glRasterPos4d, glRasterPos4f, glRasterPos4i, glRasterPos4s,
glRasterPos2dv, glRasterPos2fv, glRasterPos2iv, glRasterPos2sv, glRasterPos3dv,
glRasterPos3fv, glRasterPos3iv, glRasterPos3sv, glRasterPos4dv, glRasterPos4fv,
glRasterPos4iv, glRasterPos4sv - specify the raster position for pixel operations

C SPECIFICATION

void glRasterPos2d(GLdouble x, GLdouble y)

void glRasterPos2f(GLfloat x, GLfloat y)

void glRasterPos2i(GLint x, GLint y)

void glRasterPos2s(GLshort x, GLshort y)

void glRasterPos3d(GLdouble x, GLdouble y, Ldouble z)

void glRasterPos3f(GLfloat x, GLfloat y, GLfloat z)

void glRasterPos3i(GLint x, GLint y, GLint z)

void glRasterPos3s(GLshort x, GLshort y, GLshort z)

void glRasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
void glRasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
void glRasterPos4i(GLint x, GLint y, GLint z, GLint w)

void glRasterPos4s(GLshort x, GLshort y GLshort z, GLshort w)

PARAMETERS

X, Vs Z, W

238

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specify the x, y, z, and w object coordinates (if present) for the raster position.

C SPECIFICATION

void glRasterPos2dv(const GLdouble *v)
void glRasterPos2fv(const GLfloat *v)
void glRasterPos2iv(const GLint *v)
void glRasterPos2sv(const GLshort *v)
void glRasterPos3dv(const GLdouble *v)
void glRasterPos3fv(const GLfloat *v)
void glRasterPos3iv(const GLint *v)
void glRasterPos3sv(const GLshort *v)
void glRasterPos4dv(const GLdouble *v)
void glRasterPos4fv(const GLfloat *v)
void glRasterPos4iv(const GLint *v)
void glRasterPos4sv(const GLshort *v)

v
Specifies a pointer to an array of two, three, or four elements, specifying x, y, z, and w
coordinates, respectively.

DESCRIPTION

The GL maintains a 3-D position in window coordinates. This position, called the raster position, is
maintained with subpixel accuracy. It is used to position pixel and bitmap write operations. See
"g|Bitmap" , "glDrawPixels" , and "glCopyPixels" .

The current raster position consists of three window coordinates (x, y, z), a clip coordinate w value,
an eye coordinate distance, a valid bit, and associated color data and texture coordinates. The w
coordinate is a clip coordinate, because w is not projected to window coordinates. glRasterPos4
specifies object coordinates x, y, z, and w explicitly. glRasterPos3 specifies object coordinate x, y,
and z explicitly, while w 1s implicitly set to one. glRasterPos2 uses the argument values for x and y
while implicitly setting z and w to zero and one.

The object coordinates presented by glRasterPos are treated just like those of a glVertex command:
They are transformed by the current modelview and projection matrices and passed to the clipping
stage. If the vertex is not culled, then it is projected and scaled to window coordinates, which
become the new current raster position, and the GL_ CURRENT _RASTER_POSITION_VALID
flag is set. If the vertex is culled, then the valid bit is cleared and the current raster position and
associated color and texture coordinates are undefined.

The current raster position also includes some associated color data and texture coordinates. If
lighting is enabled, then GL_ CURRENT_RASTER COLOR, in RGBA mode, or the
GL_CURRENT_RASTER_INDEX, in color index mode, is set to the color produced by the
lighting calculation (see "glLight" , "glLightModel" , and "glShadeModel"). If lighting is disabled,

239

OpenGL Reference Manual (Addison-Wesley Publishing Company)

current color (in RGBA mode, state variable GL_ CURRENT _COLOR) or color index (in color
index mode, state variable GL_CURRENT _INDEX) is used to update the current raster color.

Likewise, GL_CURRENT_ RASTER TEXTURE_COORDS is updated as a function of
GL_CURRENT _TEXTURE_ COORDS, based on the texture matrix and the texture generation
functions (see "glTexGen"). Finally, the distance from the origin of the eye coordinate system to the
vertex as transformed by only the modelview matrix replaces
GL_CURRENT_RASTER _ DISTANCE.

Initially, the current raster position is (0,0,0,1), the current raster distance is 0, the valid bit is set, the
associated RGBA color is (1,1,1,1), the associated color index is 1, and the associated texture
coordinates are (0, 0, 0, 1). In RGBA mode, GL_CURRENT_ RASTER_INDEX is always 1; in
color index mode, the current raster RGBA color always maintains its initial value.

NOTES

The raster position is modified both by glRasterPos and by gilBitmap.

When the raster position coordinates are invalid, drawing commands that are based on the raster
position are ignored (that is, they do not result in changes to GL state).

ERRORS

GL_INVALID OPERATION is generated if glRasterPos is called between a call to gIBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_CURRENT RASTER_POSITION

glGet with argument GL_CURRENT RASTER_POSITION_VALID
glGet with argument GL_CURRENT _RASTER_DISTANCE

glGet with argument GL_CURRENT RASTER_COLOR

glGet with argument GL_CURRENT RASTER_INDEX

glGet with argument GL_ CURRENT RASTER_TEXTURE_COORDS

SEE ALSO

"glBitmap", "glCopyPixels" , "glDrawPixels" , "glLight" , "glLightModel" , "glShadeModel" ,
"glTexCoord" , "glTexGen" , "glVertex"

240

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glReadBuffer

NAME

glReadBuffer - select a color buffer source for pixels

C SPECIFICATION

void glReadBuffer(GLenum mode)

PARAMETERS

mode

Specifies a color buffer. Accepted values are GL_ FRONT _LEFT, GL_FRONT_RIGHT,
GL_BACK LEFT, GL_BACK_ RIGHT, GL_FRONT, GL_BACK, GL_LEFT,
GL_RIGHT, and GL_AUXi, where i is between 0 and GL_ AUX_ BUFFERS -1.

DESCRIPTION

glReadBuffer specifies a color buffer as the source for subsequent glReadPixels and glCopyPixels
commands. mode accepts one of twelve or more predefined values. (GL_AUXO0 through
GL_AUXS3 are always defined.) In a fully configured system, GL_FRONT, GL_LEFT, and
GL_FRONT_LEFT all name the front left buffer, GL_FRONT_ RIGHT and GL_RIGHT name
the front right buffer, and GL_BACK LEFT and GL_ BACK name the back left buffer. Nonstereo
configurations have only a left buffer, or a front left and a back left buffer if double-buffered.
Single-buffered configurations have only a front buffer, or a front left and a front right buffer if
stereo. It is an error to specify a nonexistent buffer to glReadBuffer.

By default, mode is GL_FRONT in single-buffered configurations, and GL_BACK in double-
buffered configurations.

ERRORS

GL_INVALID ENUM is generated if mode 1s not one of the twelve (or more) accepted values.
GL_INVALID OPERATION is generated if mode specifies a buffer that does not exist.

GL_INVALID OPERATION is generated if glReadBuffer is called between a call to giBegin
and the corresponding call to glEnd.

241

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS

glGet with argument GL_READ_ BUFFER

SEE ALSO

" n

"glCopyPixels", "glDrawBuffer" , "glReadPixels"

glReadPixels

NAME

glReadPixels - read a block of pixels from the frame buffer

C SPECIFICATION

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum
type, GLvoid *pixels)

PARAMETERS

X,y

Specify the window coordinates of the first pixel that is read from the frame buffer. This
location is the lower left corner of a rectangular block of pixels.

width, height

Specify the dimensions of the pixel rectangle. width and height of one correspond to a single
pixel.

format

Specifies the format of the pixel data. The following symbolic values are accepted:
GL_COLOR_INDEX, GL_STENCIL_INDEX, GL_ DEPTH _COMPONENT, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL. LUMINANCE, and
GL_LUMINANCE_ALPHA.

type

Specifies the data type of the pixel data. Must be one of GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, or GL_FLOAT.

242

OpenGL Reference Manual (Addison-Wesley Publishing Company)

pixels

Returns the pixel data.

DESCRIPTION

glReadPixels returns pixel data from the frame buffer, starting with the pixel whose lower left
corner is at location (x, y), into client memory starting at location pixels. Several parameters control
the processing of the pixel data before it is placed into client memory. These parameters are set with
three commands: glPixelStore, glPixelTransfer, and glPixelMap. This reference page describes
the effects on glReadPixels of most, but not all of the parameters specified by these three
commands.

glReadPixels returns values from each pixel with lower left-hand corner at (x + i, y +) for 0 ≤
i<width and 0 ≤ j<height. This pixel is said to be the ith pixel in the jth row. Pixels are returned
in row order from the lowest to the highest row, left to right in each row.

format specifies the format for the returned pixel values. Accepted values for format are as follows:
GL_COLOR_INDEX
Color indices are read from the color buffer selected by glReadBuffer. Each index is
converted to fixed point, shifted left or right depending on the value and sign of
GL_INDEX SHIFT, and added to GL_INDEX_ OFFSET. If GL_MAP_COLOR is
GL_TRUE, indices are replaced by their mappings in the table GL_PIXEL _MAP I TO 1.
GL_STENCIL_INDEX
Stencil values are read from the stencil buffer. Each index is converted to fixed point, shifted
left or right depending on the value and sign of GL_INDEX SHIFT, and added to
GL_INDEX OFFSET. If GL_MAP_STENCIL is GL_TRUE, indices are replaced by their
mappings in the table GL_PIXEL _MAP S TO _S.
GL_DEPTH_COMPONENT
Depth values are read from the depth buffer. Each component is converted to floating point
such that the minimum depth value maps to 0.0 and the maximum value maps to 1.0. Each
component is then multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, and
finally clamped to the range [0,1].

GL_RED

GL_GREEN

GL BLUE

243

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_ALPHA

GL_RGB

GL_RGBA

GL_LUMINANCE

GL_LUMINANCE_ALPHA

Processing differs depending on whether color buffers store color indices or RGBA color
components. If color indices are stored, they are read from the color buffer selected by
glReadBuffer. Each index is converted to fixed point, shifted left or right depending on the
value and sign of GL_INDEX SHIFT, and added to GL_INDEX OFFSET. Indices are
then replaced by the red, green, blue, and alpha values obtained by indexing the
GL_PIXEL _MAP_I TO_R, GL_PIXEL MAP I TO G, GL_PIXEL _MAP I TO_B,

and GL_PIXEL_MAP I TO_A tables.

If RGBA color components are stored in the color buffers, they are read from the color buffer
selected by glReadBuffer. Each color component is converted to floating point such that zero
intensity maps to 0.0 and full intensity maps to 1.0. Each component is then multiplied by
GL_c_SCALE and added to GL_c¢_BIAS, where c is GL_RED, GL_GREEN, GL_BLUE,
and GL_ALPHA. Each component is clamped to the range [0,1]. Finally, if
GL_MAP_COLOR is GL_TRUE, each color component c is replaced by its mapping in the
table GL_PIXEL _MAP ¢ TO_c, where ¢ again is GL_RED, GL_GREEN, GL_BLUE,
and GL_ALPHA. Each component is scaled to the size its corresponding table before the
lookup is performed.

Finally, unneeded data is discarded. For example, GL_RED discards the green, blue, and
alpha components, while GL_RGB discards only the alpha component. GL_ LUMINANCE
computes a single component value as the sum of the red, green, and blue components, and
GL_LUMINANCE_ALPHA does the same, while keeping alpha as a second value.

The shift, scale, bias, and lookup factors described above are all specified by glPixelTransfer. The
lookup table contents themselves are specified by glPixelMap.

The final step involves converting the indices or components to the proper format, as specified by
type. If format is GL_COLOR_INDEX or GL_STENCIL_INDEX and #ype is not GL_FLOAT,
each index is masked with the mask value given in the following table. If fype is GL_FLOAT, then
each integer index is converted to single-precision floating-point format.

244

OpenGL Reference Manual (Addison-Wesley Publishing Company)

If format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL._RGBA,
GL_LUMINANCE, or GL_LUMINANCE_ALPHA and #ype is not GL_FLOAT, each
component is multiplied by the multiplier shown in the following table. If type is GL._FLOAT, then
each component is passed as is (or converted to the client's single-precision floating-point format if
it is different from the one used by the GL).

type index mask component conversion
GL_UNSIGNED BYTE 28 -1 28-1c

GL_BYTE 27-1 [(27-1)c-1]/2
GL_BITMAP 1 1
GL_UNSIGNED_SHORT 216 -1 216-1)c
GL_SHORT 215-1 [215-1)c-1]/2
GL_UNSIGNED_INT 232 -1 (232-1ec

GL_INT 231-1 [231-1)c-1]/2
GL_FLOAT none c

Return values are placed in memory as follows. If format is GL_COLOR_INDEX,
GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED, GL_ GREEN, GL._BLUE,
GL_ALPHA, or GL_LUMINANCE, a single value is returned and the data for the ith pixel in the
jth row is placed in location (j) width + i. GL_RGB returns three values, GL_RGBA returns four
values, and GL_ LUMINANCE ALPHA returns two values for each pixel, with all values
corresponding to a single pixel occupying contiguous space in pixels. Storage parameters set by
glPixelStore, such as GL. PACK_SWAP BYTES and GL_PACK LSB_FIRST, affect the way
that data is written into memory. See "glPixelStore" for a description.

NOTES

Values for pixels that lie outside the window connected to the current GL context are undefined.

If an error is generated, no change is made to the contents of pixels.

ERRORS
GL_INVALID ENUM is generated if format or type is not an accepted value.
GL_INVALID VALUE is generated if either width or height is negative.

GL_INVALID OPERATION is generated if format is GL_COLOR_INDEX and the color
buffers store RGBA color components.

GL_INVALID OPERATION is generated if format is GL_STENCIL_INDEX and there is no
stencil buffer.

GL_INVALID OPERATION is generated if format is GL_DEPTH_COMPONENT and there is
no depth buffer.

GL_INVALID OPERATION is generated if glReadPixels is called between a call to giBegin and
the corresponding call to glEnd.

245

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS

glGet with argument GL_INDEX MODE

SEE ALSO

" n

"glCopyPixels", "glDrawPixels" , "glPixelMap" , "glPixelStore" , "glPixelTransfer" ,
"g]ReadBuffer"

glRect

NAME

glRectd, glRectf, glRecti, glRects, glRectdv, glRectfv, glRectiv, glRectsv - draw a rectangle

C SPECIFICATION
void glRectd(GLdouble x/, GLdouble y/, GLdouble x2, GLdouble y2)
void glRectf(GLfloat x/, GLfloat y/, GLfloat x2, GLfloat y2)

void glRecti(GLint x/, GLint y/, GLint x2, GLint y2)
void glRects(GLshort x/, GLshort y/, GLshort x2, GLshort y2)

PARAMETERS
xl,yl

Specify one vertex of a rectangle.
x2,y2

Specify the opposite vertex of the rectangle.

C SPECIFICATION

void glRectdv(const GLdouble *v/, const GLdouble *v2)
void glRectfv(const GLfloat *v/, const GLfloat *v2)
void glRectiv(const GLint *v/, const GLint *v2)

void glRectsv(const GLshort *v/, const GLshort *v2)

246

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
vl

Specifies a pointer to one vertex of a rectangle.
v2

Specifies a pointer to the opposite vertex of the rectangle.

DESCRIPTION

glRect supports efficient specification of rectangles as two corner points. Each rectangle command
takes four arguments, organized either as two consecutive pairs of (x,y) coordinates, or as two
pointers to arrays, each containing an (x,y) pair. The resulting rectangle is defined in the z=0 plane.

glRect(x/, y1, x2, y2) is exactly equivalent to the following sequence:

glBegin (GL_ POLYGON) ;
glvertex2 (x1, yl);
glvertex2 (x2, yl)
glvertex2 (x2, y2)
glvertex2 (x1, y2)
glEnd () ;

I
I
1

Note that if the second vertex is above and to the right of the first vertex, the rectangle is
constructed with a counterclockwise winding.

ERRORS

GL_INVALID OPERATION is generated if glRect is called between a call to gIBegin and the
corresponding call to glEnd.

SEE ALSO

"glBegin", "glVertex"

glRenderMode

NAME

glRenderMode - set rasterization mode

247

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

GLint glRenderMode(GLenum mode)

PARAMETERS

mode
Specifies the rasterization mode. Three values are accepted: GL_ RENDER, GL_SELECT,
and GL_FEEDBACK. The default value is GL_ RENDER.

DESCRIPTION

glRenderMode sets the rasterization mode. It takes one argument, mode, which can assume one of
three predefined values:

GL_RENDER

Render mode. Primitives are rasterized, producing pixel fragments, which are written into the
frame buffer. This is the normal mode and also the default mode.

GL_SELECT
Selection mode. No pixel fragments are produced, and no change to the frame buffer contents
is made. Instead, a record of the names of primitives that would have been drawn if the render

mode was GL_RENDER is returned in a select buffer, which must be created (see
"glSelectBuffer") before selection mode is entered.

GL_FEEDBACK
Feedback mode. No pixel fragments are produced, and no change to the frame buffer contents
is made. Instead, the coordinates and attributes of vertices that would have been drawn had the
render mode been GL._ RENDER is returned in a feedback buffer, which must be created (see
"glFeedbackBuffer") before feedback mode is entered.

The return value of glIRenderMode is determined by the render mode at the time glRenderMode is
called, rather than by mode. The values returned for the three render modes are as follows:

GL_RENDER
Zero.
GL_SELECT
The number of hit records transferred to the select buffer.

GL_FEEDBACK

248

OpenGL Reference Manual (Addison-Wesley Publishing Company)

The number of values (not vertices) transferred to the feedback buffer.

Refer to the glSelectBuffer and glFeedbackBuffer reference pages for more details concerning
selection and feedback operation.

NOTES

If an error is generated, glRenderMode returns zero regardless of the current render mode.

ERRORS

GL_INVALID ENUM is generated if mode is not one of the three accepted values.
GL_INVALID OPERATION is generated if glSelectBuffer is called while the render mode is
GL_SELECT, or if glIRenderMode is called with argument GL_SELECT before glSelectBuffer
is called at least once.

GL_INVALID OPERATION is generated if glFeedbackBuffer is called while the render mode
is GL_FEEDBACK, or if glIRenderMode is called with argument GL_ FEEDBACK before
glFeedbackBuffer is called at least once.

GL_INVALID OPERATION is generated if glRenderMode is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ RENDER_MODE

SEE ALSO

"glFeedbackBuffer", "glInitNames" , "glLoadName" , "glPassThrough" , "glPushName" ,
"glSelectBuffer"

glRotate

NAME

glRotated, glRotatef - multiply the current matrix by a rotation matrix

249

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION
void glRotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z)

void glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)

PARAMETERS
angle
Specifies the angle of rotation, in degrees.

x’y7Z

Specify the x, y, and z coordinates of a vector, respectively.

DESCRIPTION

glRotate computes a matrix that performs a counterclockwise rotation of angle degrees about the
vector from the origin through the point (x, y, z).

The current matrix (see "glMatrixMode") is multiplied by this rotation matrix, with the product
replacing the current matrix. That is, if M is the current matrix and R is the translation matrix, then
M is replaced with M o R.

If the matrix mode is either GL_MODELVIEW or GL_ PROJECTION, all objects drawn after

glRotate is called are rotated. Use glPushMatrix and glPopMatrix to save and restore the
unrotated coordinate system.

ERRORS

GL_INVALID OPERATION is generated if glRotate is called between a call to glBegin and the
corresponding call to glEnd.

ASSOCIATED GETS
glGet with argument GL_ MATRIX MODE
glGet with argument GL_ MODELVIEW_ MATRIX

glGet with argument GL_ PROJECTION_MATRIX
glGet with argument GL_ TEXTURE MATRIX

SEE ALSO

"glMatrixMode", "gIMultMatrix" , "glPushMatrix" , "glScale" , "glTranslate"

250

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glScale

NAME

glScaled, glScalef - multiply the current matrix by a general scaling matrix

C SPECIFICATION
void glScaled(GLdouble x, GLdouble y, GLdouble z)
void glScalef(GLfloat x, GLfloat y, GLfloat z)

PARAMETERS

X, Vs Z

Specify scale factors along the x, y, and z axes, respectively.

DESCRIPTION

glScale produces a general scaling along the x, y, and z axes. The three arguments indicate the
desired scale factors along each of the three axes. The resulting matrix is

x000
0y 00
00z0
0001

The current matrix (see "glMatrixMode") is multiplied by this scale matrix, with the product
replacing the current matrix. That is, if M is the current matrix and S is the scale matrix, then M is
replaced with M o S.

If the matrix mode is either GL_MODELVIEW or GL_ PROJECTION, all objects drawn after

glScale is called are scaled. Use glPushMatrix and glPopMatrix to save and restore the unscaled
coordinate system.

NOTES

If scale factors other than 1.0 are applied to the modelview matrix and lighting is enabled, automatic
normalization of normals should probably also be enabled (glEnable and glDisable with argument

251

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_NORMALIZE).

ERRORS

GL_INVALID OPERATION is generated if glScale is called between a call to glBegin and the
corresponding call to glEnd.

ASSOCIATED GETS
glGet with argument GL_ MATRIX MODE
glGet with argument GL_ MODELVIEW_ MATRIX

glGet with argument GL_ PROJECTION_MATRIX
glGet with argument GL_ TEXTURE MATRIX

SEE ALSO

"glMatrixMode", "gIMultMatrix" , "glPushMatrix" , "glRotate" , "glTranslate"

glScissor

NAME

glScissor - define the scissor box

C SPECIFICATION

void gIScissor(GLint x, GLint y, GLsizei width, GLsizei height)

PARAMETERS
XY

Specify the lower left corner of the scissor box. Initially (0,0).
width, height

Specify the width and height of the scissor box. When a GL context is first attached to a
window, width and height are set to the dimensions of that window.

252

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

The glScissor routine defines a rectangle, called the scissor box, in window coordinates. The first
two arguments, x and y, specify the lower left corner of the box. width and height specify the width
and height of the box.

The scissor test is enabled and disabled using glEnable and glDisable with argument
GL_SCISSOR_TEST. While the scissor test is enabled, only pixels that lie within the scissor box
can be modified by drawing commands. Window coordinates have integer values at the shared
corners of frame buffer pixels, so glScissor(0,0,1,1) allows only the lower left pixel in the window

to be modified, and glScissor(0,0,0,0) disallows modification to all pixels in the window.

When the scissor test is disabled, it is as though the scissor box includes the entire window.

ERRORS
GL_INVALID VALUE is generated if either width or height is negative.

GL_INVALID OPERATION is generated if glScissor is called between a call to glBegin and the
corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_SCISSOR_BOX
glIsEnabled with argument GL_SCISSOR_TEST

SEE ALSO

"glEnable", "glViewport"

glSelectBuffer

NAME

glSelectBuffer - establish a buffer for selection mode values

C SPECIFICATION

void glSelectBuffer(GLsizei size, GLuint *buffer)

253

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
size
Specifies the size of buffer.

buffer

Returns the selection data.

DESCRIPTION

glSelectBuffer has two arguments: buffer is a pointer to an array of unsigned integers, and size
indicates the size of the array. buffer returns values from the name stack (see "glInitNames" ,
"gllLoadName" , "glPushName") when the rendering mode is GL_SELECT (see "glRenderMode"
). glSelectBuffer must be issued before selection mode is enabled, and it must not be issued while
the rendering mode is GL_SELECT.

Selection is used by a programmer to determine which primitives are drawn into some region of a
window. The region is defined by the current modelview and perspective matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if a primitive
intersects the clipping volume defined by the viewing frustum and the user-defined clipping planes,
this primitive causes a selection hit. (With polygons, no hit occurs if the polygon is culled.) When a
change is made to the name stack, or when glRenderMode is called, a hit record is copied to buffer
if any hits have occurred since the last such event (name stack change or glRenderMode call). The
hit record consists of the number of names in the name stack at the time of the event, followed by
the minimum and maximum depth values of all vertices that hit since the previous event, followed
by the name stack contents, bottom name first.

Returned depth values are mapped such that the largest unsigned integer value corresponds to
window coordinate depth 1.0, and zero corresponds to window coordinate depth 0.0.

An internal index into buffer is reset to zero whenever selection mode is entered. Each time a hit
record is copied into buffer, the index is incremented to point to the cell just past the end of the
block of names - that is, to the next available cell. If the hit record is larger than the number of
remaining locations in buffer, as much data as can fit is copied, and the overflow flag is set. If the
name stack is empty when a hit record is copied, that record consists of zero followed by the
minimum and maximum depth values.

Selection mode is exited by calling glIRenderMode with an argument other than GL_ SELECT.
Whenever glRenderMode is called while the render mode is GL._ SELECT, it returns the number
of hit records copied to buffer, resets the overflow flag and the selection buffer pointer, and
initializes the name stack to be empty. If the overflow bit was set when glRenderMode was called,
a negative hit record count is returned.

254

OpenGL Reference Manual (Addison-Wesley Publishing Company)

NOTES

The contents of buffer are undefined until glRenderMode is called with an argument other than
GL_SELECT.

glBegin/glEnd primitives and calls to glRasterPos can result in hits.

ERRORS

GL_INVALID VALUE is generated if size is negative.

GL_INVALID OPERATION is generated if glSelectBuffer is called while the render mode is
GL_SELECT, or if glIRenderMode is called with argument GL_SELECT before glSelectBuffer

is called at least once.

GL_INVALID OPERATION is generated if glSelectBuffer is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_ NAME_STACK DEPTH

SEE ALSO

"glFeedbackBuffer", "glInitNames" , "glLoadName" , "glPushName" , "glRenderMode"

glShadeModel

NAME

glShadeModel - select flat or smooth shading

C SPECIFICATION

void glShadeModel(GLenum mode)

PARAMETERS

mode

Specifies a symbolic value representing a shading technique. Accepted values are GL_FLAT

255

OpenGL Reference Manual (Addison-Wesley Publishing Company)

and GL_SMOOTH. The default is GL_SMOOTH.

DESCRIPTION

GL primitives can have either flat or smooth shading. Smooth shading, the default, causes the
computed colors of vertices to be interpolated as the primitive is rasterized, typically assigning
different colors to each resulting pixel fragment. Flat shading selects the computed color of just one
vertex and assigns it to all the pixel fragments generated by rasterizing a single primitive. In either
case, the computed color of a vertex is the result of lighting, if lighting is enabled, or it is the current
color at the time the vertex was specified, if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Counting vertices and primitives from one
starting when glBegin is issued, each flat-shaded line segment i is given the computed color of
vertex i + 1, its second vertex. Counting similarly from one, each flat-shaded polygon is given the
computed color of the vertex listed in the following table. This is the last vertex to specify the
polygon in all cases except single polygons, where the first vertex specifies the flat-shaded color.

primitive type of polygon i vertex
Single polygon (i ≡ 1) 1
Triangle strip i+2
Triangle fan i+2
Independent triangle 3i
Quad strip 2i +2
Independent quad 4i

Flat and smooth shading are specified by gliShadeModel with mode set to GL_FLAT and
GL_SMOOTH, respectively.

ERRORS

GL_INVALID ENUM is generated if mode 1s any value other than GL_FLAT or
GL_SMOOTH.

GL_INVALID OPERATION is generated if glShadeModel is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_SHADE MODEL

SEE ALSO

"glBegin", "glColor" , "glLight" , "glLightModel"

256

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glStencilFunc

NAME

glStencilFunc - set function and reference value for stencil testing

C SPECIFICATION

void glStencilFunc(GLenum func, GLint ref, GLuint mask)

PARAMETERS
func

Specifies the test function. Eight tokens are valid: GL_NEVER, GL_LESS, GL_ LEQUAL,
GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and GL_ALWAYS.

ref

Specifies the reference value for the stencil test. ref is clamped to the range [0,2n - 1], where n
is the number of bitplanes in the stencil buffer.

mask

Specifies a mask that is ANDed with both the reference value and the stored stencil value
when the test is done.

DESCRIPTION

Stenciling, like z-buffering, enables and disables drawing on a per-pixel basis. You draw into the
stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering
algorithms to achieve special effects, such as decals, outlining, and constructive solid geometry
rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the
reference value and the value in the stencil buffer. The test is enabled by glEnable and glDisable
with argument GL_STENCIL. Actions taken based on the outcome of the stencil test are specified
with gIStencilOp.

func is a symbolic constant that determines the stencil comparison function. It accepts one of eight
values, shown below. ref'is an integer reference value that is used in the stencil comparison. It is
clamped to the range [0,2n - 1], where 7 is the number of bitplanes in the stencil buffer. mask is
bitwise ANDed with both the reference value and the stored stencil value, with the ANDed values
participating in the comparison.

257

OpenGL Reference Manual (Addison-Wesley Publishing Company)

If stencil represents the value stored in the corresponding stencil buffer location, the following list
shows the effect of each comparison function that can be specified by func. Only if the comparison
succeeds is the pixel passed through to the next stage in the rasterization process (see "glStencilOp"
). All tests treat stencil values as unsigned integers in the range [0,2n - 1], where 7 is the number of
bitplanes in the stencil buffer.
Here are the values accepted by func:
GL_NEVER

Always fails.
GL_LESS

Passes if (ref & mask) < (stencil & mask).
GL_LEQUAL

Passes if (ref & mask) ≤ (stencil & mask).
GL_GREATER

Passes if (ref & mask) > (stencil & mask).
GL_GEQUAL

Passes if (ref & mask) ≥ (stencil & mask).
GL_EQUAL

Passes if (ref & mask) = (stencil & mask).
GL_NOTEQUAL

Passes if (ref & mask) ≠ (stencil & mask).

GL_ALWAYS

Always passes.

NOTES

Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur
and it is as if the stencil test always passes.

258

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS

GL_INVALID ENUM is generated if func is not one of the eight accepted values.
GL_INVALID OPERATION is generated if glStencilFunc is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_STENCIL_FUNC

glGet with argument GL_STENCIL_VALUE_MASK

glGet with argument GL._ STENCIL_REF

glGet with argument GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST

SEE ALSO

"glAlphaFunc", "gIlBlendFunc" , "glDepthFunc" , "glEnable" , "gllsEnabled" , "glLogicOp" ,
"g]StencilOp"

glStencilMask

NAME

glStencilMask - control the writing of individual bits in the stencil planes

C SPECIFICATION

void gIStencilMask(GLuint mask)

PARAMETERS

mask

Specifies a bit mask to enable and disable writing of individual bits in the stencil planes.
Initially, the mask is all ones.

DESCRIPTION

glStencilMask controls the writing of individual bits in the stencil planes. The least significant »
bits of mask, where n is the number of bits in the stencil buffer, specify a mask. Wherever a one

259

OpenGL Reference Manual (Addison-Wesley Publishing Company)

appears in the mask, the corresponding bit in the stencil buffer is made writable. Where a zero
appears, the bit is write-protected. Initially, all bits are enabled for writing.

ERRORS

GL_INVALID OPERATION is generated if glStencilMask is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_STENCIL WRITEMASK
glGet with argument GL_STENCIL_BITS

SEE ALSO

"glColorMask", "glDepthMask" , "glindexMask" , "glStencilFunc" , "glStencilOp"

glStencilOp

NAME

glStencilOp - set stencil test actions

C SPECIFICATION

void gIStencilOp(GLenum fail, GLenum zfail, GLenum zpass)

PARAMETERS
fail

Specifies the action to take when the stencil test fails. Six symbolic constants are accepted:
GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_DECR, and GL_INVERT.

zfail

Specifies stencil action when the stencil test passes, but the depth test fails. zfail accepts the
same symbolic constants as fail.

zpass

260

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies stencil action when both the stencil test and the depth test pass, or when the stencil
test passes and either there is no depth buffer or depth testing is not enabled. zpass accepts the
same symbolic constants as fail.

DESCRIPTION

Stenciling, like z-buffering, enables and disables drawing on a per-pixel basis. You draw into the
stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering
algorithms to achieve special effects, such as decals, outlining, and constructive solid geometry
rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the
value in the stencil buffer and a reference value. The test is enabled with glEnable and glDisable
calls with argument GL_ STENCIL, and controlled with glStencilFunc.
glStencilOp takes three arguments that indicate what happens to the stored stencil value while
stenciling is enabled. If the stencil test fails, no change is made to the pixel's color or depth buffers,
and fail specifies what happens to the stencil buffer contents. The six possible actions are as
follows:
GL_KEEP

Keeps the current value.
GL_ZERO

Sets the stencil buffer value to zero.
GL_REPLACE

Sets the stencil buffer value to ref, as specified by glStencilFunc.

GL_INCR

Increments the current stencil buffer value. Clamps to the maximum representable unsigned
value.

GL_DECR

Decrements the current stencil buffer value. Clamps to zero.
GL_INVERT

Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. When incremented and decremented, values
are clamped to 0 and 2n - 1, where 7 is the value returned by querying GL_ STENCIL_BITS.

261

OpenGL Reference Manual (Addison-Wesley Publishing Company)

The other two arguments to glStencilOp specify stencil buffer actions should subsequent depth
buffer tests succeed (zpass) or fail (zfail). (See "glDepthFunc" .) They are specified using the same
six symbolic constants as fail. Note that zfail is ignored when there is no depth buffer, or when the
depth buffer is not enabled. In these cases, fail and zpass specify stencil action when the stencil test
fails and passes, respectively.

NOTES

Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur
and it is as if the stencil tests always pass, regardless of any call to glStencilOp.

ERRORS

GL_INVALID ENUM is generated if fail, zfail, or zpass is any value other than the six defined
constant values.

GL_INVALID OPERATION is generated if glStencilOp is called between a call to glBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_STENCIL_FAIL

glGet with argument GL_STENCIL_PASS DEPTH_PASS
glGet with argument GL_STENCIL_PASS DEPTH_FAIL
glGet with argument GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST

SEE ALSO

"glAlphaFunc", "gIlBlendFunc" , "glDepthFunc" , "glEnable" , "glLogicOp" , "glStencilFunc"

glTexCoord

NAME

glTexCoord1d, glTexCoord1f, glTexCoordli, glTexCoordls, glTexCoord2d, glTexCoord2f,
glTexCoord2i, glTexCoord2s, glITexCoord3d, glTexCoord3f, glTexCoord3i, glTexCoord3s,
glTexCoord4d, glTexCoord4f, glTexCoord4i, glTexCoord4s, glTexCoordldv, glTexCoord1fv,
glTexCoordliv, glTexCoordlsv, glTexCoord2dv, glTexCoord2fv, gITexCoord2iv,
glTexCoord2sv, glTexCoord3dv, glTexCoord3fv, glITexCoord3iv, glTexCoord3sv,
glTexCoord4dv, glTexCoord4fv, glTexCoord4iv, glITexCoord4sv - set the current texture
coordinates

262

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

void glTexCoord1d(GLdouble s)

void glTexCoord1f(GLfloat s)

void glTexCoord1i(GLint s)

void glTexCoord1s(GLshort s)

void glTexCoord2d(GLdouble s, GLdouble ¢)

void glTexCoord2f(GLfloat s, GLfloat ¢)

void glTexCoord2i(GLint s, GLint ¢)

void glTexCoord2s(GLshort s, GLshort ¢)

void glTexCoord3d(GLdouble s, GLdouble #, GLdouble r)
void glTexCoord3f(GLfloat s, GLfloat ¢, GLfloat)

void glTexCoord3i(GLint s, GLint ¢, GLint)

void glTexCoord3s(GLshort s, GLshort #, GLshort »)

void glTexCoord4d(GLdouble s, GLdouble #, GLdouble », GLdouble ¢)
void glTexCoord4f(GLfloat s, GLfloat ¢, GLfloat r, GLfloat g)
void glTexCoord4i(GLint s, GLint ¢, GLint », GLint g)

void glTexCoord4s(GLshort s, GLshort # GLshort », GLshort g)

PARAMETERS
S’ t’ r’ q

Specify s, ¢, r, and ¢ texture coordinates. Not all parameters are present in all forms of the
command.

C SPECIFICATION

void glTexCoord1dv(const GLdouble *v)
void glTexCoord1fv(const GLfloat *v)
void glTexCoordliv(const GLint *v)
void glTexCoord1sv(const GLshort *v)
void glTexCoord2dv(const GLdouble *v)
void glTexCoord2fv(const GLfloat *v)
void glTexCoord2iv(const GLint *v)
void glTexCoord2sv(const GLshort *v)
void glTexCoord3dv(const GLdouble *v)
void glTexCoord3fv(const GLfloat *v)
void glTexCoord3iv(const GLint *v)
void glTexCoord3sv(const GLshort *v)
void glTexCoord4dv(const GLdouble *v)
void glTexCoord4fv(const GLfloat *v)
void glTexCoord4iv(const GLint *v)
void glTexCoord4sv(const GLshort *v)

263

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS

Specifies a pointer to an array of one, two, three, or four elements, which in turn specify the s,
t, r, and g texture coordinates.

DESCRIPTION

The current texture coordinates are part of the data that is associated with polygon vertices. They are
set with glTexCoord.

glTexCoord specifies texture coordinates in one, two, three, or four dimensions. glTexCoord1 sets
the current texture coordinates to (s, 0, 0, 1); a call to glTexCoord2 sets them to (s, ¢, 0, 1).

Similarly, glTexCoord3 specifies the texture coordinates as (s, ¢, 7, 1), and glTexCoord4 defines all
four components explicitly as (s, ¢, 7,).

NOTES

The current texture coordinates can be updated at any time. In particular, glTexCoord can be called
between a call to gIBegin and the corresponding call to glEnd.

ASSOCIATED GETS

glGet with argument GL_CURRENT _TEXTURE_COORDS

SEE ALSO

"glVertex"

glTexEnv

NAME

glTexEnvf, glTexEnvi, glTexEnvfv, glTexEnviv - set texture environment parameters

C SPECIFICATION

void glTexEnvf(GLenum farget, GLenum pname, GLfloat param)
void glTexEnvi(GLenum target, GLenum pname, GLint param)

264

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
target

Specifies a texture environment. Must be GL_ TEXTURE_ENV.
pname

Specifies the symbolic name of a single-valued texture environment parameter. Must be
GL_TEXTURE_ENV_MODE.

param
Specifies a single symbolic constant, one of GL_ MODULATE, GL_DECAL, or
GL_BLEND.

C SPECIFICATION

void glTexEnvfv(GLenum farget, GLenum pname, const GLfloat *params)
void glTexEnviv(GLenum target, GLenum pname, const GLint *params)

PARAMETERS
target

Specifies a texture environment. Must be GL_ TEXTURE_ENV.
pname

Specifies the symbolic name of a texture environment parameter. Accepted values are
GL_TEXTURE_ENV_MODE and GL_TEXTURE_ENV_COLOR.

params

Specifies a pointer to an array of parameters: either a single symbolic constant or an RGBA
color.

DESCRIPTION

A texture environment specifies how texture values are interpreted when a fragment is textured.
target must be GL_TEXTURE_ENV. pname can be either GL_TEXTURE_ENV_MODE or
GL_TEXTURE_ENV_COLOR.

If pname 1s GL_TEXTURE_ENV_MODE, then params is (or points to) the symbolic name of a

texture function. Three texture functions are defined: GL_ MODULATE, GL_ DECAL, and
GL_BLEND

265

OpenGL Reference Manual (Addison-Wesley Publishing Company)

A texture function acts on the fragment to be textured using the texture image value that applies to
the fragment (see "glTexParameter") and produces an RGBA color for that fragment. The following
table shows how the RGBA color is produced for each of the three texture functions that can be
chosen. C is a triple of color values (RGB) and 4 is the associated alpha value. RGBA values
extracted from a texture image are in the range [0,1]. The subscript f refers to the incoming
fragment, the subscript ¢ to the texture image, the subscript ¢ to the texture environment color, and
subscript v indicates a value produced by the texture function.

A texture image can have up to four components per texture element (see "glTexImage1D" and
"g]TexImage2D"). In a one-component image, Lt indicates that single component. A two-
component image uses Lt and At. A three-component image has only a color value, Ct. A four-
component image has both a color value Ct and an alpha value At.

Number of components texture function texture function texture function
GL_MODULATE GL_DECAL GL_BLEND

1 undefined
Cv=LtCf Cv=(1-Lt)Cf+Lt
Av = Af CcAv = Af

2 undefined
Cv=LtCf Cv=(1-Lt)Cf+ LtCc
Av = At Af Av = At Af

3 undefined
Cv=CtCf Cv=_C_Ct
Av = Af Av = Af

4 undefined
Cv=_Ct Cv=(1-A4t) Cf+ At Ct
Av = At Af Av = Af

If pname 1s GL_TEXTURE_ENV_COLOR, params is a pointer to an array that holds an RGBA
color consisting of four values. Integer color components are interpreted linearly such that the most
positive integer maps to 1.0, and the most negative integer maps to -1.0. The values are clamped to
the range [0,1] when they are specified. Cc takes these four values.

GL_TEXTURE_ENV_MODE defaults to GL_MODULATE and
GL_TEXTURE_ENV_COLOR defaults to (0,0,0,0).

ERRORS
GL_INVALID ENUM is generated when target or pname is not one of the accepted defined
values, or when params should have a defined constant value (based on the value of pname) and

does not.

GL_INVALID OPERATION is generated if glTexEnv is called between a call to gilBegin and
the corresponding call to glEnd.

266

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS

glGetTexEnv

SEE ALSO

"glTexImage1D", "glTexImage2D" , "glTexParameter"

glTexGen

NAME

glTexGend, glTexGenf, glITexGeni, glTexGendv, glTexGenfv, glTexGeniv - control the
generation of texture coordinates

C SPECIFICATION

void glTexGend(GLenum coord, GLenum pname, GLdouble param)
void glTexGenf(GLenum coord, GLenum pname, GLfloat param)
void glTexGeni(GLenum coord, GLenum pname, GLint param)

PARAMETERS

coord

Specifies a texture coordinate. Must be one of the following: GL_S, GL_T, GL_R, or
GL_Q.

pname

Specifies the symbolic name of the texture-coordinate generation function. Must be
GL_TEXTURE_GEN _MODE.

param

Specifies a single-valued texture generation parameter, one of GL_OBJECT_LINEAR,
GL_EYE LINEAR, or GL_SPHERE MAP.

C SPECIFICATION

void glTexGendv(GLenum coord, GLenum pname, const GLdouble *params)
void glTexGenfv(GLenum coord, GLenum pname, const GLfloat *params)

267

OpenGL Reference Manual (Addison-Wesley Publishing Company)

void glTexGeniv(GLenum coord, GLenum pname, const GLint *params)

PARAMETERS

coord

Specifies a texture coordinate. Must be one of the following: GL_S, GL_T, GL_R, or
GL_Q.

pname

Specifies the symbolic name of the texture-coordinate generation function or function
parameters. Must be GL_ TEXTURE _GEN MODE, GL_OBJECT PLANE, or
GL_EYE_PLANE.

params

Specifies a pointer to an array of texture generation parameters. If pname is
GL_TEXTURE_GEN_MODE, then the array must contain a single symbolic constant, one
of GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. Otherwise,
params holds the coefficients for the texture-coordinate generation function specified by
pname.

DESCRIPTION

glTexGen selects a texture-coordinate generation function or supplies coefficients for one of the
functions. coord names one of the (s,,7,q) texture coordinates, and it must be one of these symbols:
GL_S,GL_T, GL_R, or GL_Q. pname must be one of three symbolic constants:
GL_TEXTURE_GEN _MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE. If pname is
GL_TEXTURE_GEN_MODE, then params chooses a mode, one of GL_OBJECT_LINEAR,
GL_EYE_LINEAR, or GL_SPHERE_MAP. If pname is either GL_OBJECT_PLANE or
GL_EYE PLANE, params contains coefficients for the corresponding texture generation function.

If the texture generation function is GL_OBJECT_LINEAR, the function
g=plxo+p2yo+p3zo+pdwo

is used, where g is the value computed for the coordinate named in coord, p1, p2, p3, and p4 are the
four values supplied in params, and xo, yo, zo, and wo are the object coordinates of the vertex. This
function can be used to texture-map terrain using sea level as a reference plane (defined by p1, p2,
p3, and p4). The altitude of a terrain vertex is computed by the GL_OBJECT _LINEAR coordinate
generation function as its distance from sea level; that altitude is used to index the texture image to
map white snow onto peaks and green grass onto foothills, for example.

If the texture generation function is GL_EYE_LINEAR, the function

g=pl'xe+p2'ye +p3'ze +pd'we

268

OpenGL Reference Manual (Addison-Wesley Publishing Company)

is used, where

(pl'p2'p3'pd') = (pl p2 p3 p4) M-1

and xe, ye, ze, and we are the eye coordinates of the vertex, pl, p2, p3, and p4 are the values
supplied in params, and M is the modelview matrix when glTexGen is invoked. If M is poorly
conditioned or singular, texture coordinates generated by the resulting function may be inaccurate or
undefined.

Note that the values in params define a reference plane in eye coordinates. The modelview matrix
that is applied to them may not be the same one in effect when the polygon vertices are transformed.
This function establishes a field of texture coordinates that can produce dynamic contour lines on
moving objects.

If pname 1s GL_SPHERE_MAP and coord is either GL_S or GL._T, s and ¢ texture coordinates
are generated as follows. Let u be the unit vector pointing from the origin to the polygon vertex (in

eye coordinates). Let n prime be the current normal, after transformation to eye coordinates. Let f =
(/x fy fz)T be the reflection vector such that

f=u-2n'n"Tu

Finally, let

m = 2in+}‘j+ (f,+1)°

Then the values assigned to the s and ¢ texture coordinates are

fe 1

= — + —

’ m 2
)C

t = —y+1

m 2

A texture-coordinate generation function is enabled or disabled using glEnable or glDisable with
one of the symbolic texture-coordinate names (GL_TEXTURE_GEN _S,
GL_TEXTURE_GEN T, GL_TEXTURE_GEN_ R, or GL_TEXTURE_GEN_Q) as the
argument. When enabled, the specified texture coordinate is computed according to the generating
function associated with that coordinate. When disabled, subsequent vertices take the specified
texture coordinate from the current set of texture coordinates. Initially, all texture generation
functions are set to GL_EYE_LINEAR and are disabled. Both s plane equations are (1,0,0,0), both
t plane equations are (0,1,0,0), and all » and ¢ plane equations are (0,0,0,0).

ERRORS

GL_INVALID ENUM is generated when coord or pname is not an accepted defined value, or

269

OpenGL Reference Manual (Addison-Wesley Publishing Company)

when pname is GL_TEXTURE_GEN_MODE and params is not an accepted defined value.

GL_INVALID ENUM is generated when prname is GL_TEXTURE_GEN_MODE, params is
GL_SPHERE_MAP, and coord is either GL_R or GL_Q.

GL_INVALID OPERATION is generated if glTexGen is called between a call to glBegin and
the corresponding call to glEnd.

ASSOCIATED GETS

glGetTexGen

glIsEnabled with argument GL_ TEXTURE_GEN_S

glIsEnabled with argument GL_TEXTURE _GEN T

glIsEnabled with argument GL_ TEXTURE_GEN R

glIsEnabled with argument GL_ TEXTURE_GEN_Q

SEE ALSO

"glTexEnv", "glTexImagel D" , "glTexImage2D" , "glTexParameter"

glTexImagelD

NAME

glTeglTexImagelD - specify a one-dimensional texture image

C SPECIFICATION

void glTexImagelD(GLenum farget, GLint level, GLint components, GLsizei width, GLint border,
GLenum format, GLenum type, const GLvoid *pixels)

PARAMETERS
target

Specifies the target texture. Must be GL_TEXTURE_1D.
level

Specifies the level-of-detail number. Level 0 is the base image level. Level # is the nth
mipmap reduction image.

270

OpenGL Reference Manual (Addison-Wesley Publishing Company)

components
Specifies the number of color components in the texture. Must be 1, 2, 3, or 4.
width

Specifies the width of the texture image. Must be 2n + 2 (‘border) for some integer n. The
height of the texture image is 1.

border
Specifies the width of the border. Must be either 0 or 1.
format

Specifies the format of the pixel data. The following symbolic values are accepted:
GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,
GL_RGBA, GL_LUMINANCE, and GL_ LUMINANCE_ALPHA.

ype

Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels

Specifies a pointer to the image data in memory.

DESCRIPTION

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. One-dimensional texturing is enabled and disabled using glEnable and
glDisable with argument GL_ TEXTURE _1D.

Texture images are defined with glTexImagelD. The arguments describe the parameters of the
texture image, such as width, width of the border, level-of-detail number (see "glTexParameter"),
and number of color components provided. The last three arguments describe the way the image is
represented in memory, and they are identical to the pixel formats used for giDrawPixels.

Data is read from pixels as a sequence of signed or unsigned bytes, shorts, or longs, or single-
precision floating-point values, depending on type. These values are grouped into sets of one, two,
three, or four values, depending on format, to form elements. If fype is GL_BITMAP, the data is
considered as a string of unsigned bytes (and format must be GL_COLOR _INDEX). Each data
byte is treated as eight 1-bit elements, with bit ordering determined by

GL_UNPACK _LSB_FIRST (see "glPixelStore").

format determines the composition of each element in pixels. It can assume one of nine symbolic

271

OpenGL Reference Manual (Addison-Wesley Publishing Company)

values:
GL_COLOR_INDEX

Each element is a single value, a color index. It is converted to fixed point (with an
unspecified number of zero bits to the right of the binary point), shifted left or right depending
on the value and sign of GL_INDEX SHIFT, and added to GL_INDEX OFFSET (see
"glPixelTransfer"). The resulting index is converted to a set of color components using the
GL_PIXEL _MAP_I TO_R, GL_PIXEL MAP I TO G, GL_PIXEL _MAP I TO_B,
and GL_PIXEL _MAP I TO A tables, and clamped to the range [0,1].

GL_RED

Each element is a single red component. It is converted to floating point and assembled into
an RGBA element by attaching 0.0 for green and blue, and 1.0 for alpha. Each component is
then multiplied by the signed scale factor GL_¢_SCALE, added to the signed bias

GL_c¢_ BIAS, and clamped to the range [0,1] (see "glPixelTransfer").

GL_GREEN

Each element is a single green component. It is converted to floating point and assembled into
an RGBA element by attaching 0.0 for red and blue, and 1.0 for alpha. Each component is
then multiplied by the signed scale factor GL_¢_SCALE, added to the signed bias

GL_c_ BIAS, and clamped to the range [0,1] (see "glPixelTransfer").

GL BLUE

Each element is a single blue component. It is converted to floating point and assembled into
an RGBA element by attaching 0.0 for red and green, and 1.0 for alpha. Each component is
then multiplied by the signed scale factor GL_¢_SCALE, added to the signed bias

GL_c_ BIAS, and clamped to the range [0,1] (see "glPixelTransfer").

GL_ALPHA
Each element is a single red component. It is converted to floating point and assembled into
an RGBA element by attaching 0.0 for red, green, and blue. Each component is then
multiplied by the signed scale factor GL_c¢_SCALE, added to the signed bias GL._c¢_BIAS,
and clamped to the range [0,1] (see "glPixelTransfer").

GL_RGB
Each element is an RGB triple. It is converted to floating point and assembled into an RGBA
element by attaching 1.0 for alpha. Each component is then multiplied by the signed scale
factor GL_c¢_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1]
(see "glPixelTransfer").

GL_RGBA

Each element is a complete RGBA element. It is converted to floating point. Each component

272

OpenGL Reference Manual (Addison-Wesley Publishing Company)

is then multiplied by the signed scale factor GL_c¢_SCALE, added to the signed bias
GL_c_ BIAS, and clamped to the range [0,1] (see "glPixelTransfer").

GL_LUMINANCE

Each element is a single luminance value. It is converted to floating point, then assembled into
an RGBA element by replicating the luminance value three times for red, green, and blue and
attaching 1.0 for alpha. Each component is then multiplied by the signed scale factor

GL_c¢ SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
"glPixel Transfer").

GL_LUMINANCE_ALPHA
Each element is a luminance/alpha pair. It is converted to floating point, then assembled into
an RGBA element by replicating the luminance value three times for red, green, and blue.
Each component is then multiplied by the signed scale factor GL_c¢_SCALE, added to the
signed bias GL_c¢_BIAS, and clamped to the range [0,1] (see "glPixelTransfer").

A texture image can have up to four components per texture element, depending on components. A

one-component texture image uses only the red component of the RGBA color extracted from

pixels. A two-component image uses the R and A values. A three-component image uses the R, G,
and B values. A four-component image uses all of the RGBA components.

NOTES

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a glIDrawPixels
command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used.
glPixelStore and glPixel Transfer modes affect texture images in exactly the way they affect

glDrawPixels.

A texture image with zero width indicates the null texture. If the null texture is specified for level-
of-detail 0, it is as if texturing were disabled.

ERRORS
GL_INVALID ENUM is generated when target is not GL_ TEXTURE _1D.

GL_INVALID ENUM is generated when format is not an accepted format constant. Format
constants other than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID ENUM is generated when type is not a type constant.

GL_INVALID ENUM is generated if type is GL_BITMAP and format is not
GL_COLOR _INDEX.

273

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_INVALID VALUE is generated if /evel is less than zero or greater than log2max, where max
is the returned value of GL_MAX TEXTURE_SIZE.

GL_INVALID VALUE is generated if components is not 1, 2, 3, or 4.

GL_INVALID VALUE is generated if width is less than zero or greater than 2 +

GL_MAX TEXTURE_SIZE, or if it cannot be represented as 2n + 2(border) for some integer
value of n.

GL_INVALID VALUE is generated if border is not 0 or 1.

GL_INVALID OPERATION is generated if glTexImagelD is called between a call to glBegin

and the corresponding call to glEnd.

ASSOCIATED GETS

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

SEE ALSO

nn " n " n

"glDrawPixels", "glFog" , "glPixelStore" , "glPixelTransfer" , "glTexEnv" , "glTexGen" ,
"glTexImage2D" , "glTexParameter"

glTexImage2D

NAME

glTexImage2D - specify a two-dimensional texture image

C SPECIFICATION

void glTexImage2D(GLenum farget, GLint level, GLint components, GLsizei width, GLsizei
height, GLint border, GLenum format, GLenum type, const GLvoid *pixels)

PARAMETERS
target
Specifies the target texture. Must be GL_TEXTURE_2D.

level

274

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies the level-of-detail number. Level 0 is the base image level. Level # is the nth
mipmap reduction image.

components

Specifies the number of color components in the texture. Must be 1, 2, 3, or 4.
width

Specifies the width of the texture image. Must be 2n + 2 (‘border) for some integer n.
height

Specifies the height of the texture image. Must be 2m + 2 (‘border) for some integer m.
border

Specifies the width of the border. Must be either 0 or 1.
format

Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,
GL_RGBA, GL_LUMINANCE, and GL_ LUMINANCE_ALPHA.

ype

Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels

Specifies a pointer to the image data in memory.

DESCRIPTION

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. Two-dimensional texturing is enabled and disabled using glEnable and
glDisable with argument GL_ TEXTURE_2D.

Texture images are defined with glTexImage2D. The arguments describe the parameters of the
texture image, such as height, width, width of the border, level-of-detail number (see
"glTexParameter"), and number of color components provided. The last three arguments describe
the way the image is represented in memory, and they are identical to the pixel formats used for
glDrawPixels.

275

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Data is read from pixels as a sequence of signed or unsigned bytes, shorts, or longs, or single-
precision floating-point values, depending on type. These values are grouped into sets of one, two,
three, or four values, depending on format, to form elements. If fype is GL_BITMAP, the data is
considered as a string of unsigned bytes (and format must be GL_COLOR _INDEX). Each data
byte is treated as eight 1-bit elements, with bit ordering determined by

GL_UNPACK _LSB_FIRST (see "glPixelStore").

format determines the composition of each element in pixels. It can assume one of nine symbolic
values:

GL_COLOR_INDEX

Each element is a single value, a color index. It is converted to fixed point (with an
unspecified number of zero bits to the right of the binary point), shifted left or right depending
on the value and sign of GL_INDEX SHIFT, and added to GL_INDEX OFFSET (see
"glPixelTransfer"). The resulting index is converted to a set of color components using the
GL_PIXEL _MAP_I TO_R, GL_PIXEL MAP I TO G, GL_PIXEL _MAP I TO_B,
and GL_PIXEL _MAP I TO A tables, and clamped to the range [0,1].

GL_RED

Each element is a single red component. It is converted to floating point and assembled into
an RGBA element by attaching 0.0 for green and blue, and 1.0 for alpha. Each component is
then multiplied by the signed scale factor GL_¢_SCALE, added to the signed bias

GL_c¢_ BIAS, and clamped to the range [0,1] (see "glPixelTransfer").

GL_GREEN

Each element is a single green component. It is converted to floating point and assembled into
an RGBA element by attaching 0.0 for red and blue, and 1.0 for alpha. Each component is
then multiplied by the signed scale factor GL_¢_SCALE, added to the signed bias

GL_c_ BIAS, and clamped to the range [0,1] (see "glPixelTransfer").

GL_BLUE
Each element is a single blue component. It is converted to floating point and assembled into
an RGBA element by attaching 0.0 for red and green, and 1.0 for alpha. Each component is

then multiplied by the signed scale factor GL_¢_SCALE, added to the signed bias
GL_c¢_ BIAS, and clamped to the range [0,1] (see "glPixelTransfer").

GL_ALPHA
Each element is a single red component. It is converted to floating point and assembled into
an RGBA element by attaching 0.0 for red, green, and blue. Each component is then
multiplied by the signed scale factor GL_c¢_SCALE, added to the signed bias GL._c¢_BIAS,
and clamped to the range [0,1] (see "glPixelTransfer").

GL_RGB

276

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Each element is an RGB triple. It is converted to floating point and assembled into an RGBA
element by attaching 1.0 for alpha. Each component is then multiplied by the signed scale
factor GL_c¢_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1]
(see "glPixelTransfer").

GL_RGBA

Each element is a complete RGBA element. It is converted to floating point. Each component
is then multiplied by the signed scale factor GL_c¢_SCALE, added to the signed bias
GL_c BIAS, and clamped to the range [0,1] (see "glPixelTransfer").

GL_LUMINANCE

Each element is a single luminance value. It is converted to floating point, then assembled into
an RGBA element by replicating the luminance value three times for red, green, and blue and
attaching 1.0 for alpha. Each component is then multiplied by the signed scale factor

GL_c¢ SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
"glPixel Transfer").

GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. It is converted to floating point, then assembled into
an RGBA element by replicating the luminance value three times for red, green, and blue.
Each component is then multiplied by the signed scale factor GL_c¢_SCALE, added to the
signed bias GL_c¢_BIAS, and clamped to the range [0,1] (see "glPixelTransfer").

Please refer to the gIDrawPixels reference page for a description of the acceptable values for the
type parameter. A texture image can have up to four components per texture element, depending on
components. A one-component texture image uses only the red component of the RGBA color

extracted from pixels. A two-component image uses the R and A values. A three-component image
uses the R, G, and B values. A four-component image uses all of the RGBA components.

NOTES

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a gIDrawPixels
command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used.
glPixelStore and glPixel Transfer modes affect texture images in exactly the way they affect

glDrawPixels.

A texture image with zero height or width indicates the null texture. If the null texture is specified
for level-of-detail 0, it is as if texturing were disabled.

ERRORS

GL_INVALID ENUM is generated when target is not GL_ TEXTURE 2D.

277

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_INVALID ENUM is generated when format is not an accepted format constant. Format
constants other than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID ENUM is generated when type is not a type constant.

GL_INVALID ENUM is generated if type is GL_BITMAP and format is not
GL_COLOR _INDEX.

GL_INVALID VALUE is generated if /evel is less than zero or greater than log2 max, where max
is the returned value of GL_MAX TEXTURE_SIZE.

GL_INVALID VALUE is generated if components is not 1, 2, 3, or 4.

GL_INVALID VALUE is generated if width or height is less than zero or greater than 2 +
GL_MAX TEXTURE_SIZE, or if either cannot be represented as 2k + 2(border) for some
integer value of k.

GL_INVALID VALUE is generated if border is not 0 or 1.

GL_INVALID OPERATION is generated if glTexImage2D is called between a call to glBegin

and the corresponding call to glEnd.

ASSOCIATED GETS

glGetTexImage
glIsEnabled with argument GL_TEXTURE_ 2D

SEE ALSO

" n

"glDrawPixels", "glFog" , "glPixelStore" , "glPixelTransfer" , "glTexEnv" , "glTexGen" ,
"glTexImage1D" , "glTexParameter"

glTexParameter

NAME

glTexParameterf, glTexParameteri, glTexParameterfv, glTexParameteriv - set texture
parameters

C SPECIFICATION

void glTexParameterf(GLenum target, GLenum pname, GLfloat param)
void glTexParameteri(GLenum farget, GLenum pname, GLint param)

278

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS

target

Specifies the target texture, which must be either GL_ TEXTURE_1D or
GL_TEXTURE_2D.

pname
Specifies the symbolic name of a single-valued texture parameter. pname can be one of the
following: GL_TEXTURE_MIN_ FILTER, GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_WRAP _S, or GL_TEXTURE_WRAP _T.

param

Specifies the value of pname.

C SPECIFICATION

void glTexParameterfv(GLenum target, GLenum pname, const GLfloat *params)
void glTexParameteriv(GLenum target, GLenum pname, const GLint *params)

PARAMETERS

target

Specifies the target texture, which must be either GL_ TEXTURE_1D or
GL_TEXTURE_2D.

pname
Specifies the symbolic name of a texture parameter. pname can be one of the following:
GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP T, or
GL_TEXTURE_BORDER_COLOR.

params

Specifies a pointer to an array where the value or values of pname are stored.

DESCRIPTION

Texture mapping is a technique that applies an image onto an object's surface as if the image were a
decal or cellophane shrink-wrap. The image is created in texture space, with an (s,) coordinate
system. A texture is a one- or two-dimensional image and a set of parameters that determine how
samples are derived from the image.

279

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glTexParameter assigns the value or values in params to the texture parameter specified as pname.
target defines the target texture, either GL_TEXTURE 1D or GL_TEXTURE 2D. The following
symbols are accepted in pname:

GL_TEXTURE_MIN FILTER

The texture minifying function is used whenever the pixel being textured maps to an area
greater than one texture element. There are six defined minifying functions. Two of them use
the nearest one or nearest four texture elements to compute the texture value. The other four
use mipmaps.

A mipmap is an ordered set of arrays representing the same image at progressively lower
resolutions. If the texture has dimensions 2n x 2m there are max (n, m) + 1 mipmaps. The
first mipmap is the original texture, with dimensions 2n x 2m. Each subsequent mipmap has
dimensions 2 k - 1 x 21 -1 where 2k x 21 are the dimensions of the previous mipmap, until
either £ = 0 or /=0. At that point, subsequent mipmaps have dimension 1 x21-1or2 k-1 x
1 until the final mipmap, which has dimension 1 x 1. Mipmaps are defined using
glTexImagelD or glTexImage2D with the level-of-detail argument indicating the order of
the mipmaps. Level 0 is the original texture; level max (n, m) is the final 1 X 1 mipmap.

params supplies a function for minifying the texture as one of the following:

GL_NEAREST

Returns the value of the texture element that is nearest (in Manhattan distance) to the center of
the pixel being textured.

GL_LINEAR
Returns the weighted average of the four texture elements that are closest to the center of the
pixel being textured. These can include border texture elements, depending on the values of
GL_TEXTURE_WRAP S and GL_TEXTURE_WRAP_T, and on the exact mapping.
GL_NEAREST _MIPMAP NEAREST
Chooses the mipmap that most closely matches the size of the pixel being textured and uses
the GL_NEAREST criterion (the texture element nearest to the center of the pixel) to
produce a texture value.
GL_LINEAR_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being textured and uses
the GL_LINEAR criterion (a weighted average of the four texture elements that are closest to

the center of the pixel) to produce a texture value.

GL_NEAREST_MIPMAP_LINEAR

280

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Chooses the two mipmaps that most closely match the size of the pixel being textured and
uses the GL_NEAREST criterion (the texture element nearest to the center of the pixel) to
produce a texture value from each mipmap. The final texture value is a weighted average of
those two values.

GL_LINEAR_MIPMAP_LINEAR

Chooses the two mipmaps that most closely match the size of the pixel being textured and
uses the GL_ LINEAR criterion (a weighted average of the four texture elements that are
closest to the center of the pixel) to produce a texture value from each mipmap. The final
texture value is a weighted average of those two values.

As more texture elements are sampled in the minification process, fewer aliasing artifacts will
be apparent. While the G NEAREST and GL_ LINEAR minification functions can be
faster than the other four, they sample only one or four texture elements to determine the
texture value of the pixel being rendered and can produce moire patterns or ragged transitions.
The default value of GL_TEXTURE_MIN_FILTER is

GL_NEAREST _MIPMAP_LINEAR.

GL_TEXTURE_MAG _FILTER

The texture magnification function is used when the pixel being textured maps to an area less
than or equal to one texture element. It sets the texture magnification function to either of the
following:

GL_NEAREST

Returns the value of the texture element that is nearest (in Manhattan distance) to the center of
the pixel being textured.

GL_LINEAR Returns the weighted average of the four texture elements that are closest to
the center of the pixel being textured. These can include border texture elements, depending
on the values of GL_ TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the

exact mapping.

GL_NEAREST is generally faster than GL_LINEAR, but it can produce textured images
with sharper edges because the transition between texture elements is not as smooth. The
default value of GL_TEXTURE_MAG_FILTER is GL_LINEAR.

GL_TEXTURE_WRAP S

Sets the wrap parameter for texture coordinate s to either GL_CLAMP or GL_ REPEAT.
GL_CLAMP causes s coordinates to be clamped to the range [0,1] and is useful for
preventing wrapping artifacts when mapping a single image onto an object. GL_ REPEAT
causes the integer part of the s coordinate to be ignored; the GL uses only the fractional part,
thereby creating a repeating pattern. Border texture elements are accessed only if wrapping is

281

OpenGL Reference Manual (Addison-Wesley Publishing Company)

set to GL_CLAMP. Initially, GL_ TEXTURE_WRAP S is set to GL_REPEAT.
GL_TEXTURE_WRAP_T

Sets the wrap parameter for texture coordinate ¢ to either GL_CLAMP or GL_ REPEAT. See
the discussion under GL_ TEXTURE_WRAP _S. Initially, GL_ TEXTURE_WRAP _T is set
to GL_REPEAT.

GL_TEXTURE_BORDER_COLOR

Sets a border color. params contains four values that comprise the RGBA color of the texture
border. Integer color components are interpreted linearly such that the most positive integer
maps to 1.0, and the most negative integer maps to -1.0. The values are clamped to the range
[0,1] when they are specified. Initially, the border color is (0, 0, 0, 0).

NOTES

Suppose texturing is enabled (by calling glEnable with argument GL_ TEXTURE_1D or
GL_TEXTURE 2D) and GL_TEXTURE_MIN_FILTER is set to one of the functions that
requires a mipmap. If either the dimensions of the texture images currently defined (with previous
calls to glTexImagelD or glTexImage2D) do not follow the proper sequence for mipmaps
(described above), or there are fewer texture images defined than are needed, or the set of texture
images have differing numbers of texture components, then it is as if texture mapping were
disabled.

Linear filtering accesses the four nearest texture elements only in 2-D textures. In 1-D textures,
linear filtering accesses the two nearest texture elements.

ERRORS

GL_INVALID ENUM is generated when target or pname is not one of the accepted defined
values, or when params should have a defined constant value (based on the value of pname) and
does not.

GL_INVALID OPERATION is generated if glTexParameter is called between a call to glBegin
and the corresponding call to glEnd.

ASSOCIATED GETS

glGetTexParameter
glGetTexLevelParameter

SEE ALSO

nn

"glTexEnv", "glTexImagel D" , "glTexImage2D" , "glTexGen"

282

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glTranslate

NAME

glTranslated, glTranslatef - multiply the current matrix by a translation matrix

C SPECIFICATION
void glTranslated(GLdouble x, GLdouble y, GLdouble z)
void glTranslatef(GLfloat x, GLfloat y, GLfloat z)

PARAMETERS

x’y7Z

Specify the x, y, and z coordinates of a translation vector.

DESCRIPTION

glTranslate moves the coordinate system origin to the point specified by (x,y,z). The translation
vector is used to compute a 4 x 4 translation matrix:

100 x
010y
001z
0001

The current matrix (see "glMatrixMode") is multiplied by this translation matrix, with the product
replacing the current matrix. That is, if M is the current matrix and T is the translation matrix, then
M is replaced with M o T.

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after
glTranslate is called are translated. Use glPushMatrix and glPopMatrix to save and restore the
untranslated coordinate system.

ERRORS

GL_INVALID_OPERATION is generated if glTranslate is called between a call to giBegin and
the corresponding call to glEnd.

283

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS
glGet with argument GL_ MATRIX MODE
glGet with argument GL_ MODELVIEW_ MATRIX

glGet with argument GL_ PROJECTION_MATRIX
glGet with argument GL_ TEXTURE MATRIX

SEE ALSO

"g]MatrixMode", "gIMultMatrix" , "glPushMatrix" , "glRotate" , "glScale"

glVertex

NAME

glVertex2d, glVertex2f, glVertex2i, glVertex2s, glVertex3d, glVertex3f, glVertex3i, glVertex3s,
glVertex4d, glVertex4f, glVertex4i, glVertex4s, glVertex2dv, glVertex2fv, glVertex2iv,
glVertex2sv, glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv, glVertex4dv, glVertex4fv,
glVertex4iv, glVertexdsv - specify a vertex

C SPECIFICATION

void glVertex2d(GLdouble x, GLdouble y)

void glVertex2f(GLfloat x, GLfloat y)

void glVertex2i(GLint x, GLint y)

void glVertex2s(GLshort x, GLshort y)

void glVertex3d(GLdouble x, GLdouble y, GLdouble z)

void glVertex3f(GLfloat x, GLfloat y, GLfloat z)

void glVertex3i(GLint x, GLint y, GLint z)

void glVertex3s(GLshort x, GLshort y, GLshort z)

void glVertex4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
void glVertex4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
void glVertex4i(GLint x, GLint y, GLint z, GLint w)

void glVertex4s(GLshort x, GLshort y, GLshort z, GLshort w)

PARAMETERS

Xy Vs Z, W

Specify x, y, z, and w coordinates of a vertex. Not all parameters are present in all forms of the
command.

284

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

void glVertex2dv(const GLdouble *v)
void glVertex2fv(const GLfloat *v)
void glVertex2iv(const GLint *v)
void glVertex2sv(const GLshort *v)
void glVertex3dv(const GLdouble *v)
void glVertex3fv(const GLfloat *v)
void glVertex3iv(const GLint *v)
void glVertex3sv(const GLshort *v)
void glVertex4dv(const GLdouble *v)
void glVertex4fv(const GLfloat *v)
void glVertex4iv(const GLint *v)
void glVertex4sv(const GLshort *v)

PARAMETERS

Specifies a pointer to an array of two, three, or four elements. The elements of a two-element
array are x and y; of a three-element array, x, y, and z; and of a four-element array, x, y, z, and
w.

DESCRIPTION
glVertex commands are used within glBegin/glEnd pairs to specify point, line, and polygon
vertices. The current color, normal, and texture coordinates are associated with the vertex when

glVertex is called.

When only x and y are specified, z defaults to 0.0 and w defaults to 1.0. When x, y, and z are
specified, w defaults to 1.0.

NOTES

Invoking glVertex outside of a gIBegin/glEnd pair results in undefined behavior.

SEE ALSO

"glBegin", "glCallList" , "glColor" , "glEdgeFlag" , "glEvalCoord" , "glindex" , "glMaterial" ,
"g]Normal" , "glRect" , "glTexCoord"

285

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glViewport

NAME

glViewport - set the viewport

C SPECIFICATION

void glViewport(GLint x, GLint y, GLsize1 width, GLsizei height)

PARAMETERS
X,y

Specity the lower left corner of the viewport rectangle, in pixels. The default is (0,0).
width, height

Specity the width and height, respectively, of the viewport. When a GL context is first
attached to a window, width and height are set to the dimensions of that window.

DESCRIPTION

glViewport specifies the affine transformation of x and y from normalized device coordinates to
window coordinates. Let (xnd, ynd) be normalized device coordinates. Then the window coordinates
(xw, yw) are computed as follows:

width
X, = (xmi+1]()+x
height
= Wt () +y

Viewport width and height are silently clamped to a range that depends on the implementation. This
range is queried by calling glGet with argument GL_ MAX VIEWPORT _ DIMS.

ERRORS
GL_INVALID VALUE is generated if either width or height is negative.

GL_INVALID OPERATION is generated if glViewport is called between a call to glBegin and
the corresponding call to glEnd.

286

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ASSOCIATED GETS

glGet with argument GL_VIEWPORT
glGet with argument GL_ MAX VIEWPORT_DIMS

SEE ALSO

"g]lDepthRange"

287

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Chapter 6
GLU Reference Pages

This chapter contains the reference pages, in alphabetical order, for all the routines comprising the
OpenGL Utility Library (GLU).

gluBeginCurve

NAME

gluBeginCurve, gluEndCurve - delimit a NURBS curve definition

C SPECIFICATION

void gluBeginCurve(GLUnurbsObj *nobj)
void gluEndCurve(GLUnurbsObj *nobj)

PARAMETERS
nobj

Specifies the NURBS object (created with gluNewNurbsRenderer).

DESCRIPTION

Use gluBeginCurve to mark the beginning of a NURBS curve definition. After calling
gluBeginCurve, make one or more calls to gluNurbsCurve to define the attributes of the curve.
Exactly one of the calls to gluNurbsCurve must have a curve type of GL_MAP1_VERTEX 3 or
GL_MAP1_VERTEX 4. To mark the end of the NURBS curve definition, call gluEndCurve.

OpenGL evaluators are used to render the NURBS curve as a series of line segments. Evaluator
state is preserved during rendering with glPushAttrib(GL_EVAL_BIT) and glPopAttrib(). See
the "glPushAttrib" reference page for details on exactly what state these calls preserve.

EXAMPLE

The following commands render a textured NURBS curve with normals; texture coordinates and
normals are also specified as NURBS curves:

gluBeginCurve (nobj) ;
gluNurbsCurve (nobj, ..., GL _MAP1 TEXTURE COORD_ 2) ;

288

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluNurbsCurve (nobj, ..., GL MAP1 NORMAL) ;
gluNurbsCurve (nobj, ..., GL MAP1l VERTEX 4);
gluEndCurve (nobj) ;

SEE ALSO

nn

"gluBeginSurface", "gluBeginTrim" , "gluNewNurbsRenderer" , "gluNurbsCurve" , glPopAttrib,
"g]PushAttrib"

gluBeginPolygon

NAME

gluBeginPolygon, gluEndPolygon - delimit a polygon description

C SPECIFICATION

void gluBeginPolygon(GLUtriangulatorObj *fobj)

void gluEndPolygon(GLUtriangulatorObj *tobj)

PARAMETERS

tobj

Specifies the tessellation object (created with gluNewTess).

DESCRIPTION

gluBeginPolygon and gluEndPolygon delimit the definition of a nonconvex polygon. To define
such a polygon, first call gluBeginPolygon. Then define the contours of the polygon by calling
gluTessVertex for each vertex and gluNextContour to start each new contour. Finally, call
gluEndPolygon to signal the end of the definition. See the "gluTessVertex" and "gluNextContour"
reference pages for more details.

Once gluEndPolygon is called, the polygon is tessellated, and the resulting triangles are described
through callbacks. See "gluTessCallback" for descriptions of the callback functions.

EXAMPLE

A quadrilateral with a triangular hole in it can be described like this:

289

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluBeginPolygon (tobj) ;
gluTessVertex (tobj, vl1, vl);
gluTessVertex (tobj, v2, v2);
gluTessVertex (tobj, v3, v3);
gluTessVertex (tobj, v4, v4);

gluNextContour (tobj, GLU INTERIOR) ;
gluTessVertex (tobj, v5, v5);
gluTessVertex (tobj, v6, v6);
gluTessVertex (tobj, v7, v7);

gluEndPolygon (tobj) ;

SEE ALSO

"gluNewTess", "gluNextContour" , "gluTessCallback" , "gluTessVertex"

gluBeginSurface

NAME

gluBeginSurface, gluEndSurface - delimit a NURBS surface definition

C SPECIFICATION
void gluBeginSurface(GLUnurbsObj *nobj)
void gluEndSurface(GLUnurbsObj *nobj)

PARAMETERS
nobj

Specifies the NURBS object (created with gluNewNurbsRenderer).

DESCRIPTION

Use gluBeginSurface to mark the beginning of a NURBS surface definition. After calling
gluBeginSurface, make one or more calls to gluNurbsSurface to define the attributes of the
surface. Exactly one of these calls to gluNurbsSurface must have a surface type of
GL_MAP2_VERTEX 3 or GL_MAP2 _VERTEX 4. To mark the end of the NURBS surface
definition, call gluEndSurface.

Trimming of NURBS surfaces is supported with gluBeginTrim, gluPwlCurve, gluNurbsCurve,
and gluEndTrim. Refer to the gluBeginTrim reference page for details.

OpenGL evaluators are used to render the NURBS surface as a set of polygons. Evaluator state is
preserved during rendering with glPushAttrib(GL_EVAL_BIT) and glPopAttrib(). See the

290

OpenGL Reference Manual (Addison-Wesley Publishing Company)

"glPushAttrib" reference page for details on exactly what state these calls preserve.

EXAMPLE

The following commands render a textured NURBS surface with normals; the texture coordinates
and normals are also described as NURBS surfaces:

gluBeginSurface (nobj) ;

gluNurbsSurface (nobj, ..., GL _MAP2 TEXTURE COORD_2) ;
gluNurbsSurface (nobj, ..., GL_MAP2 NORMAL) ;
gluNurbsSurface (nobj, ..., GL MAP2 VERTEX 4);

)

gluEndSurface (nobj

1

SEE ALSO

nn

"gluBeginCurve", "gluBeginTrim" , "gluNewNurbsRenderer" , "gluNurbsCurve" ,
"gluNurbsSurface" , "gluPwlCurve"

gluBeginTrim

NAME

gluBeginTrim, gluEndTrim - delimit a NURBS trimming loop definition

C SPECIFICATION

void gluBeginTrim(GLUnurbsObj *nobj)
void gluEndTrim(GLUnurbsObj *nobj)
PARAMETERS

nobj

Specifies the NURBS object (created with gluNewNurbsRenderer).

DESCRIPTION

Use gluBeginTrim to mark the beginning of a trimming loop, and gluEndTrim to mark the end of
a trimming loop. A trimming loop is a set of oriented curve segments (forming a closed curve) that
define boundaries of a NURBS surface. You include these trimming loops in the definition of a
NURBS surface, between calls to gluBeginSurface and gluEndSurface.

291

OpenGL Reference Manual (Addison-Wesley Publishing Company)

The definition for a NURBS surface can contain many trimming loops. For example, if you wrote a
definition for a NURBS surface that resembled a rectangle with a hole punched out, the definition
would contain two trimming loops. One loop would define the outer edge of the rectangle; the other
would define the hole punched out of the rectangle. The definitions of each of these trimming loops
would be bracketed by a gluBeginTrim/gluEndTrim pair.

The definition of a single closed trimming loop can consist of multiple curve segments, each
described as a piecewise linear curve (see "gluPwlCurve") or as a single NURBS curve (see
"gluNurbsCurve"), or as a combination of both in any order. The only library calls that can appear
in a trimming loop definition (between the calls to gluBeginTrim and gluEndTrim) are
gluPwlCurve and gluNurbsCurve.

The area of the NURBS surface that is displayed is the region in the domain to the left of the
trimming curve as the curve parameter increases. Thus, the retained region of the NURBS surface is
inside a counterclockwise trimming loop and outside a clockwise trimming loop. For the rectangle
mentioned earlier, the trimming loop for the outer edge of the rectangle runs counterclockwise,
while the trimming loop for the punched-out hole runs clockwise.

If you use more than one curve to define a single trimming loop, the curve segments must form a
closed loop (that is, the endpoint of each curve must be the starting point of the next curve, and the
endpoint of the final curve must be the starting point of the first curve). If the endpoints of the curve
are sufficiently close together but not exactly coincident, they will be coerced to match. If the
endpoints are not sufficiently close, an error results (see "gluNurbsCallback").

If a trimming loop definition contains multiple curves, the direction of the curves must be consistent
(that is, the inside must be to the left of all of the curves). Nested trimming loops are legal as long as
the curve orientations alternate correctly. Trimming curves cannot be self-intersecting, nor can they
intersect one another (or an error results).

If no trimming information is given for a NURBS surface, the entire surface is drawn.

EXAMPLE

This code fragment defines a trimming loop that consists of one piecewise linear curve, and two
NURBS curves:

gluBeginTrim(nobj) ;
gluPwlCurve (..., GLU MAP1 TRIM 2);
gluNurbsCurve (..., GLU MAP1 TRIM 2);
gluNurbsCurve (..., GLU MAP1 TRIM 3);
gluEndTrim (nobj) ;

SEE ALSO

nn

"gluBeginSurface", "gluNewNurbsRenderer" , "gluNurbsCallback" , "gluNurbsCurve" ,
"gluPwlCurve"

292

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluBuild1DMipmaps

NAME

gluBuild1DMipmaps - create 1-D mipmaps

C SPECIFICATION

int gluBuild1DMipmaps(GLenum target, GLint components, GLint width, GLenum format,
GLenum #ype, void *data)

PARAMETERS
target
Specifies the target texture. Must be GL_ TEXTURE 1D.
components
Specifies the number of color components in the texture. Must be 1, 2, 3, or 4.
width
Specifies the width of the texture image.
format
Specifies the format of the pixel data. Must be one of GL_COLOR_INDEX, GL._RED,

GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

ype

Specifies the data type for data. Must be one of GL_UNSIGNED BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, or GL_FLOAT.

data

Specifies a pointer to the image data in memory.

DESCRIPTION

gluBuild1DMipmaps obtains the input image and generates all mipmap images (using
gluScalelmage) so that the input image can be used as a mipmapped texture image. glTexImagelD

293

OpenGL Reference Manual (Addison-Wesley Publishing Company)

is then called to load each of the images. If the width of the input image is not a power of two, then
the image is scaled to the nearest power of two before the mipmaps are generated.

A return value of zero indicates success. Otherwise, a GLU error code is returned (see
"gluErrorString").

Please refer to the glTexImagelD reference page for a description of the acceptable values for the

format parameter. See the "glDrawPixels" reference page for a description of the acceptable values
for the #ype parameter.

SEE ALSO

"g]TexImage1D", "gluBuild2DMipmaps" , "gluErrorString" , "gluScaleImage"

gluBuild2DMipmaps

NAME

gluBuild2DMipmaps - create 2-D mipmaps

C SPECIFICATION

int gluBuild2DMipmaps(GLenum target, GLint components, GLint width, GLint height, GLenum
format, GLenum type, void *data)

PARAMETERS
target
Specifies the target texture. Must be GL_TEXTURE_2D.
components
Specifies the number of color components in the texture. Must be 1, 2, 3, or 4.
width, height
Specifies the width and height, respectively, of the texture image.

format

Specifies the format of the pixel data. Must be one of: GL_COLOR_INDEX, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL. LUMINANCE, and

294

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GL_LUMINANCE_ALPHA.

type
Specifies the data type for data. Must be one of: GL_UNSIGNED BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, or GL_FLOAT.

data
Specifies a pointer to the image data in memory.

DESCRIPTION

gluBuild2DMipmaps obtains the input image and generates all mipmap images (using
gluScalelmage) so that the input image can be used as a mipmapped texture image. glTexImage2D
is then called to load each of the images. If the dimensions of the input image are not powers of two,
then the image is scaled so that both the width and height are powers of two before the mipmaps are
generated.

A return value of 0 indicates success. Otherwise, a GLU error code is returned (see "gluErrorString"
).
Please refer to the glTexImagelD reference page for a description of the acceptable values for the

format parameter. See the "glDrawPixels" reference page for a description of the acceptable values
for the #ype parameter.

SEE ALSO

"g]lDrawPixels", "glTexImage1 D" , "glTexImage2D" , "gluBuildDMipmaps" , "gluErrorString" ,
"gluScalelmage"

gluCylinder

NAME

gluCylinder - draw a cylinder

C SPECIFICATION

void gluCylinder(GLUquadricObj *gobj, GLdouble baseRadius, GLdouble topRadius, GLdouble
height, GLint slices, GLint stacks)

295

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
qobj

Specifies the quadrics object (created with gluNewQuadric).
baseRadius

Specifies the radius of the cylinder at z = 0.
topRadius

Specifies the radius of the cylinder at z = height.
height

Specifies the height of the cylinder.
slices

Specifies the number of subdivisions around the z axis.
stacks

Specifies the number of subdivisions along the z axis.

DESCRIPTION

gluCylinder draws a cylinder oriented along the z axis. The base of the cylinder is placed at z = 0,
and the top at z = height . Like a sphere, a cylinder is subdivided around the z axis into slices, and
along the z axis into stacks.

Note that if fopRadius is set to zero, then this routine will generate a cone.

If the orientation is set to GLU_OUTSIDE (with gluQuadricOrientation), then any generated
normals point away from the z axis. Otherwise, they point toward the z axis.

If texturing is turned on (with gluQuadricTexture), then texture coordinates are generated so that ¢

ranges linearly from 0.0 at z = 0 to 1.0 at z = height, and s ranges from 0.0 at the +y axis, to 0.25 at
the +x axis, to 0.5 at the -y axis, to 0.75 at the -x axis, and back to 1.0 at the +y axis.

SEE ALSO

"gluDisk", "gluNewQuadric" , "gluPartialDisk" , "gluQuadricTexture" , "gluSphere"

296

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluDeleteNurbsRenderer

NAME

gluDeleteNurbsRenderer - destroy a NURBS object

C SPECIFICATION

void gluDeleteNurbsRenderer(GLUnurbsObj *nobj)

PARAMETERS
nobj

Specifies the NURBS object to be destroyed (created with gluNewNurbsRenderer).

DESCRIPTION

gluDeleteNurbsRenderer destroys the NURBS object and frees any memory used by it. Once
gluDeleteNurbsRenderer has been called, nobj cannot be used again.

SEE ALSO

"gluNewNurbsRenderer"

gluDeleteQuadric

NAME

gluDeleteQuadric - destroy a quadrics object

C SPECIFICATION

void gluDeleteQuadric(GLUquadricObj *state)

PARAMETERS

State

297

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies the quadrics object to be destroyed (created with gluNewQuadric).

DESCRIPTION

gluDeleteQuadric destroys the quadrics object and frees any memory used by it. Once
gluDeleteQuadric has been called, state cannot be used again.

SEE ALSO

"gluNewQuadric"

gluDeleteTess

NAME

gluDeleteTess - destroy a tessellation object

C SPECIFICATION

void gluDeleteTess(GLUtriangulatorObj *fobj)

PARAMETERS

tobj

Specifies the tessellation object to destroy (created with gluNewTess).

DESCRIPTION

gluDeleteTess destroys the indicated tessellation object and frees any memory that it used.

SEE ALSO

nn " n

"gluBeginPolygon", "gluNewTess" , "gluTessCallback"

298

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluDisk

NAME

gluDisk - draw a disk

C SPECIFICATION
void gluDisk(GLUquadricObj *qobj, GLdouble innerRadius, GLdouble outerRadius, GLint slices,
GLint loops)

PARAMETERS
qobj

Specifies the quadrics object (created with gluNewQuadric).
innerRadius

Specifies the inner radius of the disk (may be 0).
outerRadius

Specifies the outer radius of the disk.
slices

Specifies the number of subdivisions around the z axis.
loops

Specifies the number of concentric rings about the origin into which the disk is subdivided.

DESCRIPTION

gluDisk renders a disk on the z = 0 plane. The disk has a radius of outerRadius, and contains a
concentric circular hole with a radius of innerRadius. If innerRadius is 0, then no hole is generated.
The disk is subdivided around the z axis into slices (like pizza slices), and also about the z axis into
rings (as specified by slices and loops, respectively).

With respect to orientation, the +z side of the disk is considered to be "outside" (see
"gluQuadricOrientation"). This means that if the orientation is set to GLU_OUTSIDE, then any

normals generated point along the +z axis. Otherwise, they point along the -z axis.

If texturing is turned on (with gluQuadricTexture), texture coordinates are generated linearly such

299

OpenGL Reference Manual (Addison-Wesley Publishing Company)

that where » = outerRadius , the value at (, 0, 0) is (1, 0.5), at (0, , 0) it is (0.5, 1), at (-7, 0, 0) it is
(0, 0.5), and at (0, -r, 0) it is (0.5, 0).

SEE ALSO

nn n n

"gluCylinder", "gluNewQuadric" , "gluPartialDisk" , "gluQuadricOrientation" ,

n n

"gluQuadricTexture" , "gluSphere"

gluErrorString

NAME

gluErrorString - produce an error string from an OpenGL or GLU error code

C SPECIFICATION

const GLubyte* gluErrorString(GLenum errorCode)

PARAMETERS

errorCode

Specifies an OpenGL or GLU error code.

DESCRIPTION

gluErrorString produces an error string from an OpenGL or GLU error code. The string is in an
ISO Latin 1 format. For example, gluErrorString(GL_OUT_OF_MEMORY) returns the string
out of memory.

The standard GLU error codes are GLU_INVALID ENUM, GLU_INVALID_ VALUE, and
GLU_OUT_OF_MEMORY. Certain other GLU functions can return specialized error codes
through callbacks. Refer to the glGetError reference page for the list of OpenGL error codes.

SEE ALSO

"glGetError", "gluNurbsCallback" , "gluQuadricCallback" , "gluTessCallback"

300

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluGetNurbsProperty

NAME

gluGetNurbsProperty - get a NURBS property

C SPECIFICATION

void gluGetNurbsProperty(GLUnurbsObj *nobj, GLenum property, GLfloat *value)

PARAMETERS
nobj
Specifies the NURBS object (created with gluNewNurbsRenderer).
property
Specifies the property whose value is to be fetched. Valid values are GLU_CULLING,
GLU _SAMPLING _TOLERANCE, GLU_DISPLAY _MODE, and
GLU AUTO _LOAD MATRIX.

value

Specifies a pointer to the location into which the value of the named property is written.

DESCRIPTION

gluGetNurbsProperty is used to retrieve properties stored in a NURBS object. These properties
affect the way that NURBS curves and surfaces are rendered. Please refer to the gluNurbsProperty
reference page for information about what the properties are and what they do.

SEE ALSO

n"nn

"gluNewNurbsRenderer", "gluNurbsProperty"

glulLoadSamplingMatrices

NAME

gluLoadSamplingMatrices - load NURBS sampling and culling matrices

301

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION
void gluLoadSamplingMatrices(GLUnurbsObj *nobj, const GLfloat modelMatrix[16], const
GLfloat projMatrix[16], const GLint viewport[4]),)

PARAMETERS
nobj

Specifies the NURBS object (created with gluNewNurbsRenderer).
modelMatrix

Specifies a modelview matrix (as from a glGetFloatv call).
projMatrix

Specifies a projection matrix (as from a glGetFloatv call).
viewport;

Specifies a viewport (as from a glGetIntegerv call).

DESCRIPTION

gluLoadSamplingMatrices uses modelMatrix, projMatrix, and viewport; to recompute the
sampling and culling matrices stored in nobj. The sampling matrix determines how finely a NURBS
curve or surface must be tessellated to satisty the sampling tolerance (as determined by the
GLU_SAMPLING _TOLERANCE property). The culling matrix is used in deciding if a NURBS
curve or surface should be culled before rendering (when the GLU_CULLING property is turned
on).

gluLoadSamplingMatrices is necessary only if the GLU_AUTO_LOAD_MATRIX property is
turned off (see "gluNurbsProperty"). Although it can be convenient to leave the

GLU _AUTO _LOAD_ MATRIX property turned on, there can be a performance penalty for doing
s0. (A round trip to the OpenGL server is needed to fetch the current values of the modelview
matrix, projection matrix, and viewport.)

SEE ALSO

nn " n

"gluGetNurbsProperty", "gluNewNurbsRenderer" , "gluNurbsProperty"

302

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluLookAt

NAME

gluLookAt - define a viewing transformation

C SPECIFICATION
void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble
centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz)

PARAMETERS
eyex, eyey, eyez

Specifies the position of the eye point.
centerx, centery, centerz

Specifies the position of the reference point.
upx, upy, upz

Specifies the direction of the up vector.

DESCRIPTION

gluLookAt creates a viewing matrix derived from an eye point, a reference point indicating the
center of the scene, and an up vector. The matrix maps the reference point to the negative z axis and
the eye point to the origin, so that, when a typical projection matrix is used, the center of the scene
maps to the center of the viewport. Similarly, the direction described by the up vector projected onto
the viewing plane is mapped to the positive y axis so that it points upward in the viewport. The up
vector must not be parallel to the line of sight from the eye to the reference point.

The matrix generated by gluLookAt postmultiplies the current matrix.

SEE ALSO

"glFrustum", "gluPerspective"

303

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluNewNurbsRenderer

NAME

gluNewNurbsRenderer - create a NURBS object

C SPECIFICATION

GLUnurbsObj* gluNewNurbsRenderer(void)

DESCRIPTION

gluNewNurbsRenderer creates and returns a pointer to a new NURBS object. This object must be
referred to when calling NURBS rendering and control functions. A return value of zero means that
there is not enough memory to allocate the object.

SEE ALSO

nn n n

"gluBeginCurve", "gluBeginSurface" , "gluBeginTrim" , "gluDeleteNurbsRenderer" ,
"gluNurbsCallback" , "gluNurbsProperty"

gluNewQuadric

NAME

gluNewQuadric - create a quadrics object

C SPECIFICATION

GLUquadricObj* gluNewQuadric(void)

DESCRIPTION

gluNewQuadric creates and returns a pointer to a new quadrics object. This object must be referred
to when calling quadrics rendering and control functions. A return value of zero means that there is
not enough memory to allocate the object.

304

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

"gluCylinder", "gluDeleteQuadric" , "gluDisk" , "gluPartialDisk" , "gluQuadricCallback" ,

"gluQuadricDrawStyle" , "gluQuadricNormals" , "gluQuadricOrientation" , "gluQuadricTexture" ,
"gluSphere"

gluNewTess

NAME

gluNewTess - create a tessellation object

C SPECIFICATION

GLUtriangulatorObj* gluNewTess(void)

DESCRIPTION

gluNewTess creates and returns a pointer to a new tessellation object. This object must be referred
to when calling tessellation functions. A return value of zero means that there is not enough memory
to allocate the object.

SEE ALSO

nn

"gluBeginPolygon", "gluDeleteTess" , "gluTessCallback"

gluNextContour

NAME

gluNextContour - mark the beginning of another contour

C SPECIFICATION

void gluNextContour(GLUtriangulatorObj *tobj, GLenum type)

305

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
tobj
Specifies the tessellation object (created with gluNewTess).

ype

Specifies the type of the contour being defined. Valid values are GLU_EXTERIOR,
GLU_INTERIOR, GLU_UNKNOWN, GLU_CCW, and GLU_CW.

DESCRIPTION

gluNextContour is used in describing polygons with multiple contours. After the first contour has
been described through a series of gluTessVertex calls, a gluNextContour call indicates that the
previous contour is complete and that the next contour is about to begin. Another series of
gluTessVertex calls is then used to describe the new contour. This process can be repeated until all
contours have been described.

type defines what type of contour follows. The legal contour types are as follows:
GLU_EXTERIOR
An exterior contour defines an exterior boundary of the polygon.
GLU_INTERIOR
An interior contour defines an interior boundary of the polygon (such as a hole).
GLU_UNKNOWN
An unknown contour is analyzed by the library to determine if it is interior or exterior.
GLU_CCW, GLU_CW
The first GLU_CCW or GLU_CW contour defined is considered to be exterior. All other
contours are considered to be exterior if they are oriented in the same direction (clockwise or
counterclockwise) as the first contour, and interior if they are not. If one contour is of type
GLU_CCW or GLU_CW, then all contours must be of the same type (if they are not, then all
GLU_CCW and GLU_CW contours will be changed to GLU_UNKNOWN). Note that there
is no real difference between the GLU_CCW and GLU_CW contour types.
gluNextContour can be called before the first contour is described to define the type of the first

contour. If gluNextContour is not called before the first contour, then the first contour is marked
GLU_EXTERIOR.

306

OpenGL Reference Manual (Addison-Wesley Publishing Company)

EXAMPLE

A quadrilateral with a triangular hole in it can be described as follows:

gluBeginPolygon (tobj) ;
gluTessVertex (tobj, vl1, vl);
gluTessVertex (tobj, v2, v2);
gluTessVertex (tobj, v3, v3);
gluTessVertex (tobj, v4, v4);

gluNextContour (tobj, GLU INTERIOR) ;
gluTessVertex (tobj, v5, v5);
gluTessVertex (tobj, v6, v6);
gluTessVertex (tobj, v7, v7);

gluEndPolygon (tobj) ;

SEE ALSO

nn

"gluBeginPolygon", "gluNewTess" , "gluTessCallback" , "gluTessVertex"

gluNurbsCallback

NAME

gluNurbsCallback - define a callback for a NURBS object

C SPECIFICATION

void gluNurbsCallback(GLUnurbsObj *nobj, GLenum which, void (*fn)(')

PARAMETERS
nobj
Specifies the NURBS object (created with gluNewNurbsRenderer).
which
Specifies the callback being defined. The only valid value is GLU_ERROR.
fn

Specifies the function that the callback calls.

307

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

gluNurbsCallback is used to define a callback to be used by a NURBS object. If the specified
callback is already defined, then it is replaced. If fn is NULL, then any existing callback is erased.

The one legal callback is GLU_ERROR:

GLU_ERROR
The error function is called when an error is encountered. Its single argument is of type
GLenum, and it indicates the specific error that occurred. There are 37 errors unique to

NURBS named GLU_NURBS_ERRORI through GLU_NURBS_ERROR37. Character
strings describing these errors can be retrieved with gluErrorString.

SEE ALSO

nn

"gluErrorString", "gluNewNurbsRenderer"

gluNurbsCurve

NAME

gluNurbsCurve - define the shape of a NURBS curve

C SPECIFICATION
void gluNurbsCurve(GLUnurbsObj *nobj, GLint nknots, GLfloat *knot, GLint stride, GLfloat

*ctlarray, GLint order, GLenum type)

PARAMETERS
nobj

Specifies the NURBS object (created with gluNewNurbsRenderer).
nknots

Specifies the number of knots in knot. nknots equals the number of control points plus the
order.

knot

Specifies an array of nknots nondecreasing knot values.

308

OpenGL Reference Manual (Addison-Wesley Publishing Company)

stride

Specifies the offset (as a number of single-precision floating-point values) between successive
curve control points.

ctlarray

Specifies a pointer to an array of control points. The coordinates must agree with #ype,
specified below.

order

Specifies the order of the NURBS curve. order equals degree + 1, hence a cubic curve has an

order of 4.

type
Specifies the type of the curve. If this curve is defined within a
gluBeginCurve/gluEndCurve pair, then the type can be any of the valid one-dimensional
evaluator types (such as GL_ MAP1 _VERTEX 3 or GL_MAP1_COLOR _4). Between a
gluBeginTrim/gluEndTrim pair, the only valid types are GLU_MAP1_TRIM 2 and
GLU_MAP1_TRIM 3.

DESCRIPTION

Use gluNurbsCurve to describe a NURBS curve.

When gluNurbsCurve appears between a gluBeginCurve/gluEndCurve pair, it is used to describe
a curve to be rendered. Positional, texture, and color coordinates are associated by presenting each
as a separate gluNurbsCurve between a gluBeginCurve/gluEndCurve pair. No more than one call
to gluNurbsCurve for each of color, position, and texture data can be made within a single
gluBeginCurve/gluEndCurve pair. Exactly one call must be made to describe the position of the
curve (a type of GL_MAP1_VERTEX 3 or GL_MAP1_VERTEX 4).

When gluNurbsCurve appears between a gluBeginTrim/gluEndTrim pair, it is used to describe a
trimming curve on a NURBS surface. If #ype is GLU_MAP1_TRIM 2, then it describes a curve in
two-dimensional (u and v) parameter space. If it is GLU_MAP1_TRIM 3, then it describes a curve
in two-dimensional homogeneous (u, v, and w) parameter space. See the "gluBeginTrim" reference
page for more discussion about trimming curves.

EXAMPLE

The following commands render a textured NURBS curve with normals:

gluBeginCurve (nobj) ;
gluNurbsCurve (nobj, ..., GL_MAP1 TEXTURE COORD 2) ;
gluNurbsCurve (nobj, ..., GL MAP1 NORMAL) ;

309

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluNurbsCurve (nobj, ..., GL MAP1 VERTEX 4);
gluEndCurve (nobj) ;

SEE ALSO

nn "n n

"gluBeginCurve", "gluBeginTrim" , "gluNewNurbsRenderer" , "gluPwlCurve"

gluNurbsProperty

NAME

gluNurbsProperty - set a NURBS property

C SPECIFICATION

void gluNurbsProperty(GLUnurbsObj *nobj, GLenum property, GLfloat value)

PARAMETERS
nobj

Specifies the NURBS object (created with gluNewNurbsRenderer).
property

Specifies the property to be set. Valid values are GLU_SAMPLING _TOLERANCE,
GLU_DISPLAY MODE, GLU_CULLING, and GLU_AUTO_LOAD MATRIX.

value

Specifies the value to which to set the indicated property.

DESCRIPTION

gluNurbsProperty is used to control properties stored in a NURBS object. These properties affect
the way that a NURBS curve is rendered. The legal values for property are as follows:

GLU_SAMPLING _TOLERANCE
value specifies the maximum length, in pixels, of line segments or edges of polygons used to

render NURBS curves or surfaces. The NURBS code is conservative when rendering a curve
or surface, so the actual length can be somewhat shorter. The default value is 50.0 pixels.

310

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GLU_DISPLAY_MODE

value defines how a NURBS surface should be rendered. value can be set to GLU_FILL,
GLU_OUTLINE_POLYGON, or GLU_OUTLINE_PATCH. When set to GLU_FILL,
the surface is rendered as a set of polygons. GLU_OUTLINE_POLYGON instructs the
NURBS library to draw only the outlines of the polygons created by tessellation.
GLU_OUTLINE PATCH causes just the outlines of patches and trim curves defined by the
user to be drawn. The default value is GLU_FILL.

GLU_CULLING

value is a Boolean value that, when set to GL_TRUE, indicates that a NURBS curve should
be discarded prior to tessellation if its control points lie outside the current viewport. The
default is GL_FALSE (because a NURBS curve cannot fall entirely within the convex hull of
its control points).

GLU _AUTO_LOAD MATRIX

value is a Boolean value. When set to GL_TRUE, the NURBS code downloads the projection
matrix, the modelview matrix, and the viewport from the OpenGL server to compute sampling
and culling matrices for each NURBS curve that is rendered. Sampling and culling matrices
are required to determine the tesselation of a NURBS surface into line segments or polygons
and to cull a NURBS surface if it lies outside of the viewport. If this mode is set to
GL_FALSE, then the user needs to provide a projection matrix, a modelview matrix, and a
viewport for the NURBS renderer to use to construct sampling and culling matrices. This can
be done with the gluLoadSamplingMatrices function. The default for this mode is
GL_TRUE. Changing this mode from GL_TRUE to GL_FALSE does not affect the
sampling and culling matrices until gluLoadSamplingMatrices is called.

SEE ALSO

"gluGetNurbsProperty", "gluLoadSamplingMatrices" , "gluNewNurbsRenderer"

gluNurbsSurface

NAME

gluNurbsSurface - define the shape of a NURBS surface

C SPECIFICATION
void gluNurbsSurface(GLUnurbsObj *nobj, GLint sknot_count, GLfloat *sknot, GLint

tknot _count, GLfloat *tknot, GLint s_stride, GLint ¢ stride, GLfloat *ctlarray, GLint sorder, GLint
torder, GLenum type)

311

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
nobj
Specifies the NURBS object (created with gluNewNurbsRenderer).
sknot_count
Specifies the number of knots in the parametric u direction.
sknot
Specifies an array of sknot count nondecreasing knot values in the parametric u direction.
tknot_count
Specifies the number of knots in the parametric v direction.
tknot
Specifies an array of thknot count nondecreasing knot values in the parametric v direction.
s_stride

Specifies the offset (as a number of single-precision floating point values) between successive
control points in the parametric u direction in ctlarray.

t stride

Specifies the offset (in single-precision floating-point values) between successive control
points in the parametric v direction in ctlarray.

ctlarray
Specifies an array containing control points for the NURBS surface. The offsets between
successive control points in the parametric # and v directions are given by s_stride and
t stride.

sorder

Specifies the order of the NURBS surface in the parametric u direction. The order is one more
than the degree, hence a surface that is cubic in « has a u order of 4.

torder

Specifies the order of the NURBS surface in the parametric v direction. The order is one more
than the degree, hence a surface that is cubic in v has a v order of 4.

ype

312

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies type of the surface. #ype can be any of the valid two-dimensional evaluator types
(such as GL_MAP2_VERTEX 3 or GL_MAP2 COLOR 4).

DESCRIPTION

Use gluNurbsSurface within a NURBS (Non-Uniform Rational B-Spline) surface definition to
describe the shape of a NURBS surface (before any trimming). To mark the beginning of a NURBS
surface definition, use the gluBeginSurface command. To mark the end of a NURBS surface
definition, use the gluEndSurface command. Call gluNurbsSurface within a NURBS surface
definition only.

Positional, texture, and color coordinates are associated with a surface by presenting each as a
separate gluNurbsSurface between a gluBeginSurface/gluEndSurface pair. No more than one
call to gluNurbsSurface for each of color, position, and texture data can be made within a single
gluBeginSurface/gluEndSurface pair. Exactly one call must be made to describe the position of
the surface (a type of GL_MAP2_VERTEX 3 or GL_MAP2 VERTEX 4).

A NURBS surface can be trimmed by using the commands gluNurbsCurve and gluPwlCurve
between calls to gluBeginTrim and gluEndTrim.

Note that a gluNurbsSurface with sknot count knots in the u direction and tknot count knots in the

v direction with orders sorder and torder must have (sknot _count - sorder) x (tknot_count - torder)
control points.

EXAMPLE

The following commands render a textured NURBS surface with normals; the texture coordinates
and normals are also NURBS surfaces:

gluBeginSurface (nobj) ;

gluNurbsSurface (nobj, ..., GL _MAP2 TEXTURE COORD_2) ;
gluNurbsSurface (nobj, ..., GL_MAP2 NORMAL) ;
gluNurbsSurface (nobj, ..., GL MAP2 VERTEX 4);

)

gluEndSurface (nobj

I

SEE ALSO

nn

"gluBeginSurface", "gluBeginTrim" , "gluNewNurbsRenderer" , "gluNurbsCurve" , "gluPwlCurve"

313

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluOrtho2D

NAME

gluOrtho2D - define a 2-D orthographic projection matrix

C SPECIFICATION

void gluOrtho2D(GLdouble /eft, GLdouble right, GLdouble bottom, GLdouble top)

PARAMETERS
left, right

Specity the coordinates for the left and right vertical clipping planes.
bottom, top

Specify the coordinates for the bottom and top horizontal clipping planes.

DESCRIPTION

gluOrtho2D sets up a two-dimensional orthographic viewing region. This is equivalent to calling
glOrtho with near = -1 and far =1 .

SEE ALSO

"glOrtho", "gluPerspective"

gluPartialDisk

NAME

gluPartialDisk - draw an arc of a disk

C SPECIFICATION

void gluPartialDisk(GLUquadricObj *qobj, GLdouble innerRadius, GLdouble outerRadius, GLint
slices, GLint loops, GLdouble startAngle, GLdouble sweepAngle)

314

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
qobj

Specifies a quadrics object (created with gluNewQuadric).
innerRadius

Specifies the inner radius of the partial disk (can be zero).
outerRadius

Specifies the outer radius of the partial disk.
slices

Specfies the number of subdivisions around the z axis.
loops

Specifies the number of concentric rings about the origin into which the partial disk is
subdivided.

startAngle
Specifies the starting angle, in degrees, of the disk portion.
sweepAngle

Specifies the sweep angle, in degrees, of the disk portion.

DESCRIPTION

gluPartialDisk renders a partial disk on the z = 0 plane. A partial disk is similar to a full disk,
except that only the subset of the disk from startAngle through startAngle + sweepAngle is included
(where 0 degrees is along the +yaxis, 90 degrees along the +x axis, 180 along the -y axis, and 270
along the -x axis).

The partial disk has a radius of outerRadius, and contains a concentric circular hole with a radius of
innerRadius. If innerRadius is zero, then no hole is generated. The partial disk is subdivided around
the z axis into slices (like pizza slices), and also about the z axis into rings (as specified by slices
and /oops, respectively).

With respect to orientation, the +z side of the partial disk is considered to be outside (see
"gluQuadricOrientation"). This means that if the orientation is set to GLU_OUTSIDE, then any

normals generated point along the +z axis. Otherwise, they point along the -z axis.

If texturing is turned on (with gluQuadricTexture), texture coordinates are generated linearly such

315

OpenGL Reference Manual (Addison-Wesley Publishing Company)

that where » = outerRadius , the value at (, 0, 0) is (1, 0.5), at (0, , 0) it is (0.5, 1), at (-7, 0, 0) it is
(0, 0.5), and at (0, -r, 0) it is (0.5, 0).

SEE ALSO

"n n

"gluCylinder", "gluDisk" , "gluNewQuadric" , "gluQuadricOrientation" , "gluQuadricTexture" ,
"gluSphere"

gluPerspective

NAME

gluPerspective - set up a perspective projection matrix

C SPECIFICATION

void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear, GLdouble zFar)

PARAMETERS
Jovy

Specifies the field of view angle, in degrees, in the y direction.
aspect

Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio
is the ratio of x (width) to y (height).

zNear
Specifies the distance from the viewer to the near clipping plane (always positive).
zFar

Specifies the distance from the viewer to the far clipping plane (always positive).

DESCRIPTION

gluPerspective specifies a viewing frustum into the world coordinate system. In general, the aspect
ratio in gluPerspective should match the aspect ratio of the associated viewport. For example,
aspect = 2.0 means the viewer's angle of view is twice as wide in x as it is in y. If the viewport is

316

OpenGL Reference Manual (Addison-Wesley Publishing Company)

twice as wide as it is tall, it displays the image without distortion.
The matrix generated by gluPerspective is multipled by the current matrix, just as if giMultMatrix

were called with the generated matrix. To load the perspective matrix onto the current matrix stack
instead, precede the call to gluPerspective with a call to glL.oadIdentity.

SEE ALSO

"glFrustum", "glLoadldentity" , "gIMultMatrix" , "gluOrtho2D"

gluPickMatrix

NAME

gluPickMatrix - define a picking region

C SPECIFICATION
void gluPickMatrix(GLdouble x, GLdouble y, GLdouble width, GLdouble height, GLint
viewport[4])

PARAMETERS
X,y
Specify the center of a picking region in window coordinates.
width, height
Specify the width and height, respectively, of the picking region in window coordinates.
viewport

Specifies the current viewport (as from a glGetIntegerv call).

DESCRIPTION

gluPickMatrix creates a projection matrix that can be used to restrict drawing to a small region of
the viewport. This is typically useful to determine what objects are being drawn near the cursor. Use
gluPickMatrix to restrict drawing to a small region around the cursor. Then, enter selection mode
(with glRenderMode and rerender the scene. All primitives that would have been drawn near the
cursor are identified and stored in the selection buffer.

317

OpenGL Reference Manual (Addison-Wesley Publishing Company)

The matrix created by gluPickMatrix is multiplied by the current matrix just as if giMultMatrix is
called with the generated matrix. To effectively use the generated pick matrix for picking, first call
glLoadlIdentity to load an identity matrix onto the perspective matrix stack. Then call
gluPickMatrix, and finally, call a command (such as gluPerspective) to multiply the perspective
matrix by the pick matrix.

When using gluPickMatrix to pick NURBS, be careful to turn off the NURBS property
GLU_AUTO_LOAD MATRIX. If GLU_ AUTO_LOAD_MATRIX is not turned off, then any
NURBS surface rendered is subdivided differently with the pick matrix than the way it was
subdivided without the pick matrix.

EXAMPLE

When rendering a scene as follows:

glMatrixMode (GL PROJECTION) ;
glLoadIdentity () ;
gluPerspective(...);
glMatrixMode (GL MODELVIEW) ;
/* Draw the scene */

a portion of the viewport can be selected as a pick region like this:

glMatrixMode (GL PROJECTION) ;
glLoadIdentity () ;

gluPickMatrix(x, y, width, height, viewport);
gluPerspective(...);

glMatrixMode (GL MODELVIEW) ;

/* Draw the scene */

SEE ALSO

"glGet", "glLoadldentity" , "gIMultMatrix" , "glRenderMode" , "gluPerspective"

gluProject

NAME

gluProject - map object coordinates to window coordinates

C SPECIFICATION
int gluProject(GLdouble objx, GLdouble objy, GLdouble 0bjz, const GLdouble modelMatrix[16],

const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *winx, GLdouble *winy,
GLdouble *winz)

318

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
objx, objy, objz

Specity the object coordinates.
modelMatrix

Specifies the current modelview matrix (as from a glGetDoublev call).
projMatrix

Specifies the current projection matrix (as from a glGetDoublev call).
viewport

Specifies the current viewport (as from a glGetIntegerv call).
WInx, winy, winz

Return the computed window coordinates.

DESCRIPTION

gluProject transforms the specified object coordinates into window coordinates using modelMatrix,
projMatrix, and viewport. The result is stored in winx, winy, and winz. A return value of GL_TRUE
indicates success, and GL_FALSE indicates failure.

SEE ALSO

"glGet", "gluUnProject"

gluPwlCurve

NAME

gluPwlCurve - describe a piecewise linear NURBS trimming curve

C SPECIFICATION

void gluPwlCurve(GLUnurbsObj *nobj, GLint count, GLfloat *array, GLint stride, GLenum ftype
)

319

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
nobj
Specifies the NURBS object (created with gluNewNurbsRenderer).
count
Specifies the number of points on the curve.
array
Specifies an array containing the curve points.
stride

Specifies the offset (a number of single-precision floating-point values) between points on the
curve.

ype

Specifies the type of curve. Must be either GLU_MAP1_TRIM 2 or
GLU_MAP1_TRIM 3.

DESCRIPTION

gluPwlCurve describes a piecewise linear trimming curve for a NURBS surface. A piecewise linear
curve consists of a list of coordinates of points in the parameter space for the NURBS surface to be
trimmed. These points are connected with line segments to form a curve. If the curve is an
approximation to a real curve, the points should be close enough that the resulting path appears
curved at the resolution used in the application.

If type is GLU_MAP1_TRIM 2, then it describes a curve in two-dimensional (# and v) parameter
space. If it is GLU_MAP1_TRIM 3, then it describes a curve in two-dimensional homogeneous
(u, v, and w) parameter space. Please refer to the gluBeginTrim reference page for more
information about trimming curves.

SEE ALSO

nn

"gluBeginCurve", "gluBeginTrim" , "gluNewNurbsRenderer" , "gluNurbsCurve"

320

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glgluQuadricCallback

NAME

gluQuadricCallback - define a callback for a quadrics object

C SPECIFICATION

void gluQuadricCallback(GLUquadricObj *qobj, GLenum which, void (*fn)(’)

PARAMETERS
qobj

Specifies the quadrics object (created with gluNewQuadric).
which

Specifies the callback being defined. The only valid value is GLU_ERROR.

Specifies the function to be called.

DESCRIPTION

gluQuadricCallback is used to define a new callback to be used by a quadrics object. If the
specified callback is already defined, then it is replaced. If fn is NULL, then any existing callback is
erased.

The one legal callback is GLU_ERROR:
GLU_ERROR
The function is called when an error is encountered. Its single argument is of type GLenum,

and it indicates the specific error that occurred. Character strings describing these errors can
be retrieved with the gluErrorString call.

SEE ALSO

nn

"gluErrorString", "gluNewQuadric"

321

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluQuadricDrawStyle

NAME

gluQuadricDrawStyle - specify the draw style desired for quadrics

C SPECIFICATION

void gluQuadricDrawStyle(GLUquadricObj *quadObject, GLenum drawStyle)

PARAMETERS
quadObject
Specifies the quadrics object (created with gluNewQuadric).
drawStyle
Specifies the desired draw style. Valid values are GLU_FILL, GLU_LINE,

GLU_SILHOUETTE, and GLU_POINT.

DESCRIPTION

gluQuadricDrawStyle specifies the draw style for quadrics rendered with quadObject. The legal
values are as follows:

GLU_FILL

Quadrics are rendered with polygon primitives. The polygons are drawn in a counterclockwise
fashion with respect to their normals (as defined with gluQuadricOrientation).

GLU_LINE
Quadrics are rendered as a set of lines.
GLU_SILHOUETTE

Quadrics are rendered as a set of lines, except that edges separating coplanar faces will not be
drawn.

GLU_POINT

Quadrics are rendered as a set of points.

322

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

"gluNewQuadric", "gluQuadricNormals" , "gluQuadricOrientation" , "gluQuadricTexture"

gluQuadricNormals

NAME

gluQuadricNormals - specify what kind of normals are desired for quadrics

C SPECIFICATION

void gluQuadricNormals(GLUquadricObj *quadObject, GLenum normals)

PARAMETERS

quadObject
Specifes the quadrics object (created with gluNewQuadric).

normals
Specifies the desired type of normals. Valid values are GLU_NONE, GLU_FLAT, and
GLU_SMOOTH.

DESCRIPTION

gluQuadricNormals specifies what kind of normals are desired for quadrics rendered with
quadObject. The legal values are as follows:

GLU_NONE

No normals are generated.
GLU_FLAT

One normal is generated for every facet of a quadric.
GLU_SMOOTH

One normal is generated for every vertex of a quadric. This is the default.

323

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

nn " n

"gluNewQuadric", "gluQuadricDrawStyle" , "gluQuadricOrientation" , "gluQuadricTexture"

gluQuadricOrientation

NAME

gluQuadricOrientation - specify inside/outside orientation for quadrics

C SPECIFICATION

void gluQuadricOrientation(GLUquadricObj *quadObject, GLenum orientation)

PARAMETERS

quadObject
Specifies the quadrics object (created with gluNewQuadric).
orientation

Specifies the desired orientation. Valid values are GLU_OUTSIDE and GLU_INSIDE.

DESCRIPTION

gluQuadricOrientation specifies what kind of orientation is desired for quadrics rendered with
quadObject. The orientation values are as follows:

GLU_OUTSIDE

Quadrics are drawn with normals pointing outward.
GLU_INSIDE

Normals point inward. The default is GLU_OUTSIDE.

Note that the interpretation of outward and inward depends on the quadric being drawn.

SEE ALSO

nn

"gluNewQuadric", "gluQuadricDrawStyle" , "gluQuadricNormals" , "gluQuadricTexture"

324

OpenGL Reference Manual (Addison-Wesley Publishing Company)

gluQuadricTexture

NAME

gluQuadricTexture - specify if texturing is desired for quadrics

C SPECIFICATION

void gluQuadricTexture(GLUquadricObj *quadObject, GLboolean textureCoords)

PARAMETERS
quadObject

Specifies the quadrics object (created with gluNewQuadric).
textureCoords

Specifies a flag indicating if texture coordinates should be generated.

DESCRIPTION
gluQuadricTexture specifies if texture coordinates should be generated for quadrics rendered with

quadObject. 1f the value of textureCoords is GL_TRUE, then texture coordinates are generated,
and if textureCoords is GL_FALSE, they are not. The default is GL_FALSE.

The manner in which texture coordinates are generated depends upon the specific quadric rendered.

SEE ALSO

"gluNewQuadric", "gluQuadricDrawStyle" , "gluQuadricNormals" , "gluQuadricOrientation"

gluScalelmage

NAME

gluScaleImage - scale an image to an arbitrary size

325

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

int gluScalelmage(GLenum format, GLint widthin, GLint heightin, GLenum typein, const void
*datain, GLint widthout, GLint heightout, GLenum typeout, void *dataout)

PARAMETERS

format
Specifies the format of the pixel data. The following symbolic values are valid:
GL_COLOR_INDEX, GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_ LUMINANCE, and
GL_LUMINANCE_ALPHA.

widthin, heightin
Specify the width and height, respectively, of the source image that is scaled.

typein
Specifies the data type for datain. Must be one of GL_UNSIGNED BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED _INT,
GL_INT, or GL_FLOAT.

datain
Specifies a pointer to the source image.

widthout, heightout
Specify the width and height, respectively, of the destination image.

typeout

Specifies the data type for dataout. Must be one of GL_UNSIGNED BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, or GL_FLOAT.

dataout

Specifies a pointer to the destination image.

DESCRIPTION

gluScalelmage scales a pixel image using the appropriate pixel store modes to unpack data from
the source image and pack data into the destination image.

326

OpenGL Reference Manual (Addison-Wesley Publishing Company)

When shrinking an image, gluScaleImage uses a box filter to sample the source image and create
pixels for the destination image. When magnifying an image, the pixels from the source image are
linearly interpolated to create the destination image.

A return value of zero indicates success, otherwise a GLU error code is returned indicating what the
problem was (see "gluErrorString").

Please refer to the glReadPixels reference page for a description of the acceptable values for the
format, typein, and typeout parameters.

SEE ALSO

"g]lDrawPixels", "glReadPixels" , "gluBuild1DMipmaps" , "gluBuild2DMipmaps" ,
"gluErrorString"

gluSphere

NAME

gluSphere - draw a sphere

C SPECIFICATION

void gluSphere(GLUquadricObj *qobj, GLdouble radius, GLint slices, GLint stacks)

PARAMETERS
qobj
Specifies the quadrics object (created with gluNewQuadric).
radius
Specifies the radius of the sphere.
slices
Specifies the number of subdivisions around the z axis (similar to lines of longitude).
stacks

Specifies the number of subdivisions along the z axis (similar to lines of latitude).

327

OpenGL Reference Manual (Addison-Wesley Publishing Company)

DESCRIPTION

gluSphere draws a sphere of the given radius centered around the origin. The sphere is subdivided
around the z axis into slices and along the z axis into stacks (similar to lines of longitude and
latitude).

If the orientation is set to GLU_OUTSIDE (with gluQuadricOrientation), then any normals
generated point away from the center of the sphere. Otherwise, they point toward the center of the
sphere.

If texturing is turned on (with gluQuadricTexture), then texture coordinates are generated so that ¢
ranges from 0.0 at z = -radius to 1.0 at z = radius (¢ increases linearly along longitudinal lines), and
s ranges from 0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 at the -y axis, to 0.75 at the -x axis, and
back to 1.0 at the +y axis.

SEE ALSO

"gluCylinder", "gluDisk" , "gluNewQuadric" , "gluPartialDisk" , "gluQuadricOrientation" ,
"gluQuadricTexture"

gluTessCallback

NAME

gluTessCallback - define a callback for a tessellation object

C SPECIFICATION

void gluTessCallback(GLUtriangulatorObj *fobj, GLenum which, void (*fn)(')

PARAMETERS
tobj

Specifies the tessellation object (created with gluNewTess).
which

Specifies the callback being defined. The following values are valid: GLU_BEGIN,
GLU_EDGE_FLAG, GLU_VERTEX, GLU_END, and GLU_ERROR.

328

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies the function to be called.

DESCRIPTION

gluTessCallback is used to indicate a callback to be used by a tessellation object. If the specified
callback is already defined, then it is replaced. If fz is NULL, then the existing callback is erased.

These callbacks are used by the tessellation object to describe how a polygon specified by the user is
broken into triangles.

The legal callbacks are as follows:
GLU_BEGIN

The begin callback is invoked like gIBegin to indicate the start of a (triangle) primitive. The
function takes a single argument of type GLenum that is either GL_TRIANGLE_ FAN,
GL_TRIANGLE_STRIP, or GL_TRIANGLES.

GLU_EDGE_FLAG

The edge flag callback is similar to glEdgeFlag. The function takes a single Boolean flag that
indicates which edges of the created triangles were part of the original polygon defined by the
user, and which were created by the tessellation process. If the flag is GL_TRUE, then each
vertex that follows begins an edge that was part of the original polygon. If the flag is
GL_FALSE, then each vertex that follows begins an edge that was generated by the
tessellator. The edge flag callback (if defined) is invoked before the first vertex callback is
made.

Since triangle fans and triangle strips do not support edge flags, the begin callback is not
called with GL_ TRIANGLE_FAN or GL_TRIANGLE_STRIP if an edge flag callback is
provided. Instead, the fans and strips are converted to independent triangles.

GLU_VERTEX
The vertex callback is invoked between the begin and end callbacks. It is similar to glVertex,
and it defines the vertices of the triangles created by the tessellation process. The function
takes a pointer as its only argument. This pointer is identical to the opaque pointer provided
by the user when the vertex was described (see "gluTessVertex").

GLU_END

The end callback serves the same purpose as glEnd. It indicates the end of a primitive and it
takes no arguments.

GLU_ERROR

The error callback is called when an error is encountered. The one argument is of type

329

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GLenum, and it indicates the specific error that occurred. There are eight errors unique to
polygon tessellation, named GLU_TESS_ERRORI1 through GLU _TESS ERRORS.
Character strings describing these errors can be retrieved with the gluErrorString call.

EXAMPLE

Polygons tessellated can be rendered directly like this:

gluTessCallback(tobj, GLU BEGIN, glBegin) ;
gluTessCallback (tobj, GLU VERTEX, glVertex3dv) ;
gluTessCallback(tobj, GLU END, glEnd) ;
gluBeginPolygon (tobj) ;

gluTessVertex (tobj, v, Vv);

gluEndPolygon (tobj) ;

Typically, the tessellated polygon should be stored in a display list so that it does not need to be
retessellated every time it is rendered.

SEE ALSO

"glBegin", "glEdgeFlag" , "glVertex" , "gluDeleteTess" , "gluErrorString" , "gluNewTess" ,
"gluTessVertex"

gluTessVertex

NAME

gluTessVertex - specify a vertex on a polygon

C SPECIFICATION

void gluTessVertex(GLUtriangulatorObj *tobj, GLdouble v/3], void *data)

PARAMETERS

tobj

Specifies the tessellation object (created with gluNewTess).

Specifies the location of the vertex.

330

OpenGL Reference Manual (Addison-Wesley Publishing Company)

data

Specifies an opaque pointer passed back to the user with the vertex callback (as specified by
gluTessCallback).

DESCRIPTION

gluTessVertex describes a vertex on a polygon that the user is defining. Successive gluTessVertex
calls describe a closed contour. For example, if the user wants to describe a quadrilateral, then
gluTessVertex should be called four times. gluTessVertex can only be called between
gluBeginPolygon and gluEndPolygon.

data normally points to a structure containing the vertex location, as well as other per-vertex
attributes such as color and normal. This pointer is passed back to the user through the
GLU_VERTEX callback after tessellation (see the "gluTessCallback" reference page).

EXAMPLE

A quadrilateral with a triangular hole in it can be described as follows:

gluBeginPolygon (tobj) ;
gluTessVertex (tobj, vl1, vl);
gluTessVertex (tobj, v2, v2);
gluTessVertex (tobj, v3, v3);
gluTessVertex (tobj, v4, v4);

gluNextContour (tobj, GLU INTERIOR) ;
gluTessVertex (tobj, v5, v5);
gluTessVertex (tobj, v6, v6);
gluTessVertex (tobj, v7, v7);

gluEndPolygon (tobj) ;

SEE ALSO

nn

"gluBeginPolygon", "gluNewTess" , "gluNextContour" , "gluTessCallback"

gluUnProject

NAME

gluUnProject - map window coordinates to object coordinates

C SPECIFICATION

int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, const GLdouble
modelMatrix[16], const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *objx,

331

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GLdouble *objy, GLdouble *objz)

PARAMETERS
WInx, winy, winz

Specity the window coordinates to be mapped.
modelMatrix

Specifies the modelview matrix (as from a glGetDoublev call).
projMatrix

Specifies the projection matrix (as from a glGetDoublev call).
viewport

Specifies the viewport (as from a glGetIntegerv call).
objx, objy, objz

Returns the computed object coordinates.

DESCRIPTION

gluUnProject maps the specified window coordinates into object coordinates using modelMatrix,
projMatrix, and viewport. The result is stored in objx, objy, and objz. A return value of GL_TRUE
indicates success, and GL_FALSE indicates failure.

SEE ALSO

"glGet", "gluProject"

332

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Chapter 7
GLX Reference Pages

This chapter contains the reference pages, in alphabetical order, for all the routines comprising the
OpenGL extension to X (GLX). Note that there is a glXIntro page, which gives an overview of
OpenGL in the X Window System; you might want to start with this page.

glXChooseVisual

NAME

glXChooseVisual - return a visual that matches specified attributes

C SPECIFICATION

XVisuallnfo* glXChooseVisual(Display *dpy, int screen, int *attribList)

PARAMETERS
dpy
Specifies the connection to the X server.
screen
Specifies the screen number.
attribList
Specifies a list of Boolean attributes and integer attribute/value pairs. The last attribute must

be None.

DESCRIPTION

glXChooseVisual returns a pointer to an XVisuallnfo structure describing the visual that best meets
a minimum specification. The Boolean GLX attributes of the visual that is returned will match the
specified values, and the integer GLX attributes will meet or exceed the specified minimum values.
If all other attributes are equivalent, then TrueColor and PseudoColor visuals have priority over
DirectColor and StaticColor visuals, respectively. If no conforming visual exists, NULL is returned.
To free the data returned by this function, use XFree.

333

OpenGL Reference Manual (Addison-Wesley Publishing Company)

All Boolean GLX attributes default to False except GLX USE_GL, which defaults to True. All
integer GLX attributes default to zero. Default specifications are superseded by attributes included
in attribList. Boolean attributes included in attribList are understood to be True. Integer attributes
are followed immediately by the corresponding desired or minimum value. The list must be
terminated with None.

The interpretations of the various GLX visual attributes are as follows:

GLX _USE_GL
Ignored. Only visuals that can be rendered with GLX are considered.

GLX_BUFFER_SIZE
Must be followed by a nonnegative integer that indicates the desired color index buffer size.
The smallest index buffer of at least the specified size is preferred. Ignored if GLX RGBA is
asserted.

GLX _LEVEL
Must be followed by an integer buffer-level specification. This specification is honored
exactly. Buffer level zero corresponds to the default frame buffer of the display. Buffer level
one is the first overlay frame buffer, level two the second overlay frame buffer, and so on.
Negative buffer levels correspond to underlay frame buffers.

GLX_RGBA

If present, only TrueColor and DirectColor visuals are considered. Otherwise, only
PseudoColor and StaticColor visuals are considered.

GLX_DOUBLEBUFFER

If present, only double-buffered visuals are considered. Otherwise, only single-buffered
visuals are considered.

GLX_STEREO

If present, only stereo visuals are considered. Otherwise, only monoscopic visuals are
considered.

GLX_AUX_ BUFFERS
Must be followed by a nonnegative integer that indicates the desired number of auxiliary
buffers. Visuals with the smallest number of auxiliary buffers that meets or exceeds the
specified number are preferred.

GLX_RED SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, the

334

OpenGL Reference Manual (Addison-Wesley Publishing Company)

smallest available red buffer is preferred. Otherwise, the largest available red buffer of at least
the minimum size is preferred.

GLX_GREEN SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, the
smallest available green buffer is preferred. Otherwise, the largest available green buffer of at
least the minimum size is preferred.

GLX_BLUE_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, the
smallest available blue buffer is preferred. Otherwise, the largest available blue buffer of at
least the minimum size is preferred.

GLX_ALPHA_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, the
smallest available alpha buffer is preferred. Otherwise, the largest available alpha buffer of at
least the minimum size is preferred.

GLX_DEPTH_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, visuals
with no depth buffer are preferred. Otherwise, the largest available depth buffer of at least the
minimum size is preferred.

GLX_STENCIL_SIZE

Must be followed by a nonnegative integer that indicates the desired number of stencil
bitplanes. The smallest stencil buffer of at least the specified size is preferred. If the desired
value is zero, visuals with no stencil buffer are preferred.

GLX_ACCUM_RED SIZE
Must be followed by a nonnegative minimum size specification. If this value is zero, visuals
with no red accumulation buffer are preferred. Otherwise, the largest possible red
accumulation buffer of at least the minimum size is preferred.
GLX_ACCUM_GREEN_ SIZE
Must be followed by a nonnegative minimum size specification. If this value is zero, visuals
with no green accumulation buffer are preferred. Otherwise, the largest possible green
accumulation buffer of at least the minimum size is preferred.

GLX_ACCUM_BLUE_SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, visuals
with no blue accumulation buffer are preferred. Otherwise, the largest possible blue

335

OpenGL Reference Manual (Addison-Wesley Publishing Company)

accumulation buffer of at least the minimum size is preferred.
GLX_ACCUM_ALPHA SIZE

Must be followed by a nonnegative minimum size specification. If this value is zero, visuals

with no alpha accumulation buffer are preferred. Otherwise, the largest possible alpha

accumulation buffer of at least the minimum size is preferred.

EXAMPLES

attribList =

{GLX_RGBA, GLX_RED SIZE, 4, GLX_GREEN_SIZE, 4, GLX BLUE_SIZE, 4,
None};

Specifies a single-buffered RGB visual in the normal frame buffer, not an overlay or underlay
buffer. The returned visual supports at least four bits each of red, green, and blue, and possibly no
bits of alpha. It does not support color index mode, double-buffering, or stereo display. It may or
may not have one or more auxiliary color buffers, a depth buffer, a stencil buffer, or an
accumulation buffer.

NOTES

XVisuallnfo is defined in Xutil.h. 1t is a structure that includes visual, visuallD, screen, and depth
elements.

glXChooseVisual is implemented as a client-side utility using only XGetVisuallnfo and
glXGetConfig. Calls to these two routines can be used to implement selection algorithms other than
the generic one implemented by glXChooseVisual.

GLX implementers are strongly discouraged, but not proscribed, from changing the selection
algorithm used by gIXChooseVisual. Therefore, selections may change from release to release of
the client-side library.

There is no direct filter for picking only visuals that support GLXPixmaps. GLXPixmaps are
supported for visuals whose GLX_ BUFFER_SIZE. is one of the Pixmap depths supported by the
X server.

ERRORS

NULL is returned if an undefined GLX attribute is encountered in attribList.

SEE ALSO

"g]XCreateContext", "glXGetConfig"

336

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glXCopyContext

NAME

glXCopyContext - copy state from one rendering context to another

C SPECIFICATION

void gIXCopyContext(Display *dpy, GLXContext src, GLXContext dst, GLuint mask)

PARAMETERS
dpy
Specifies the connection to the X server.
src
Specifies the source context.
dst
Specifies the destination context.
mask

Specifies which portions of src state are to be copied to dst.

DESCRIPTION

glXCopyContext copies selected groups of state variables from src to dst. mask indicates which
groups of state variables are to be copied. mask contains the bitwise OR of the same symbolic
names that are passed to the OpenGL command glPushAttrib. The single symbolic constant
GL_ALL ATTRIB_BITS can be used to copy the maximum possible portion of rendering state.

The copy can be done only if the renderers named by s7c and dst share an address space. Two
rendering contexts share an address space if both are nondirect using the same server, or if both are
direct and owned by a single process. Note that in the nondirect case it is not necessary for the
calling threads to share an address space, only for their related rendering contexts to share an
address space.

Not all values for OpenGL state can be copied. For example, pixel pack and unpack state, render

mode state, and select and feedback state are not copied. The state that can be copied is exactly the
state that is manipulated by OpenGL command glPushA ttrib.

337

OpenGL Reference Manual (Addison-Wesley Publishing Company)

An implicit glFlush is done by gIXCopyContext if src is the current context for the calling thread.

If src is not the current context for the thread issuing the request, then the state of the src context is
undefined.

NOTES

Two rendering contexts share an address space if both are nondirect using the same server, or if
both are direct and owned by a single process.

A process 1is a single execution environment, implemented in a single address space, consisting of
one or more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain separate

program counters, stack spaces, and other related global data. A thread that is the only member of
its subprocess group is equivalent to a process.

ERRORS

BadMatch is generated if rendering contexts src and dst do not share an address space or were not
created with respect to the same screen.

BadAccess is generated if dst is current to any thread (including the calling thread) at the time
glXCopyContext is called.

GLXBadCurrentWindow is generated if src is the current context and the current drawable is a
window that is no longer valid.

GLX Bad_Context is generated if either src or dst is not a valid GLX context.

BadValue is generated if undefined mask bits are specified.

SEE ALSO

"glPushAttrib", "glXCreateContext" , "glXIsDirect"

glXCreateContext

NAME

glXCreateContext - create a new GLX rendering context

338

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

GLXContext glXCreateContext(Display *dpy, XVisuallnfo *vis, GLXContext shareList, Bool
direct)

PARAMETERS

dpy
Specifies the connection to the X server.
VIS

Specifies the visual that defines the frame buffer resources available to the rendering context.
It is a pointer to an XVisuallnfo structure, not a visual ID or a pointer to a Visual.

shareList

Specifies the context with which to share display lists. NULL indicates that no sharing is to
take place.

direct

Specifies whether rendering is to be done with a direct connection to the graphics system if
possible (True) or through the X server (False).

DESCRIPTION

glXCreateContext creates a GLX rendering context and returns its handle. This context can be
used to render into both windows and GLX pixmaps. If gIXCreateContext fails to create a
rendering context, NULL is returned.

If direct is True, then a direct rendering context is created if the implementation supports direct
rendering and the connection is to an X server that is local. If direct is False, then a rendering
context that renders through the X server is always created. Direct rendering provides a performance
advantage in some implementations. However, direct rendering contexts cannot be shared outside a
single process, and they cannot be used to render to GLX pixmaps.

If shareList is not NULL, then all display-list indexes and definitions are shared by context
shareList and by the newly created context. An arbitrary number of contexts can share a single
display-list space. However, all rendering contexts that share a single display-list space must
themselves exist in the same address space. Two rendering contexts share an address space if both
are nondirect using the same server, or if both are direct and owned by a single process. Note that in
the nondirect case, it is not necessary for the calling threads to share an address space, only for their
related rendering contexts to share an address space.

339

OpenGL Reference Manual (Addison-Wesley Publishing Company)

NOTES

XVisuallnfo is defined in Xutil.h. 1t is a structure that includes visual, visuallD, screen, and depth
elements.

A process 1s a single execution environment, implemented in a single address space, consisting of
one or more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain separate

program counters, stack spaces, and other related global data. A thread that is the only member of
its subprocess group is equivalent to a process.

ERRORS

NULL is returned if execution fails on the client side.

BadMatch is generated if the context to be created would not share the address space or the screen
of the context specified by shareList.

BadValue is generated if vis is not a valid visual (e.g., if the GLX implementation does not support
it).

GLX Bad_Context is generated if shareList is not a GLX context and is not NULL.

BadAlloc is generated if the server does not have enough resources to allocate the new context.

SEE ALSO

"g]XDestroyContext", "glXGetConfig" , "glXIsDirect" , "glXMakeCurrent"

glXCreateGLXPixmap

NAME

glXCreateGLXPixmap - create an off-screen GLX rendering area

C SPECIFICATION

GLXPixmap glXCreateGLXPixmap(Display *dpy, XVisuallnfo *vis, Pixmap pixmap)

340

OpenGL Reference Manual (Addison-Wesley Publishing Company)

PARAMETERS
dpy

Specifies the connection to the X server.
Vis

Specifies the visual that defines the structure of the rendering area. It is a pointer to an
XVisuallnfo structure, not a visual ID or a pointer to a Visual.

pixmap

Specifies the X pixmap that will be used as the front left color buffer of the off-screen
rendering area.

DESCRIPTION

glXCreateGLXPixmap creates an off-screen rendering area and returns its XID. Any GLX
rendering context that was created with respect to vis can be used to render into this off-screen area.
Use glXMakeCurrent to associate the rendering area with a GLX rendering context.

The X pixmap identified by pixmap is used as the front left buffer of the resulting off-screen
rendering area. All other buffers specified by vis, including color buffers other than the front left
buffer, are created without externally visible names. GLX pixmaps with double-buffering are
supported. However, gIXSwapBuffers is ignored by these pixmaps.

Direct rendering contexts cannot be used to render into GLX pixmaps.

NOTES

XVisuallnfo is defined in Xutil.h. 1t is a structure that includes visual, visuallD, screen, and depth
elements.

ERRORS

BadMatch is generated if the depth of pixmap does not match the GLX BUFFER_SIZE value of
vis, or if pixmap was not created with respect to the same screen as vis.

BadValue is generated if vis is not a valid XVisuallnfo pointer (e.g., if the GLX implementation
does not support this visual).

BadPixmap is generated if pixmap is not a valid pixmap.

BadAlloc is generated if the server cannot allocate the GLX pixmap.

341

OpenGL Reference Manual (Addison-Wesley Publishing Company)

SEE ALSO

"g]XCreateContext", "glXIsDirect" , "glXMakeCurrent"

glXDestroyContext

NAME

glXDestroyContext - destroy a GLX context

C SPECIFICATION

void glXDestroyContext(Display *dpy, GLXContext ctx)

PARAMETERS

dpy
Specifies the connection to the X server.
cIx

Specifies the GLX context to be destroyed.

DESCRIPTION

If GLX rendering context ctx is not current to any thread, gIXDestroyContext destroys it
immediately. Otherwise, ctx is destroyed when it becomes not current to any thread. In either case,
the resource ID referenced by ctx is freed immediately.

ERRORS

GLX_Bad_Context is generated if czx is not a valid GLX context.

SEE ALSO

"glXCreateContext", "glXMakeCurrent"

342

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glXDestroyGLXPixmap

NAME

glXDestroyGLXPixmap - destroy a GLX pixmap

C SPECIFICATION

void gIXDestroyGLXPixmap(Display *dpy, GLXPixmap pix)

PARAMETERS

dpy
Specifies the connection to the X server.
pix

Specifies the GLX pixmap to be destroyed.

DESCRIPTION

If GLX pixmap pix is not current to any client, gIXDestroyGLXPixmap destroys it immediately.
Otherwise, pix is destroyed when it becomes not current to any client. In either case, the resource ID
is freed immediately.

ERRORS

GLX Bad_Pixmap is generated if pix is not a valid GLX pixmap.

SEE ALSO

"glXCreateGLXPixmap", "glXMakeCurrent"

glXGetConfig

NAME

glXGetConfig - return information about GLX visuals

343

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

int glXGetConfig(Display *dpy, XVisuallnfo *vis, int attrib, int *value)

PARAMETERS
dpy

Specifies the connection to the X server.
Vis

Specifies the visual to be queried. It is a pointer to an XVisuallnfo structure, not a visual ID
or a pointer to a Visual.

attrib
Specifies the visual attribute to be returned.
value

Returns the requested value.

DESCRIPTION

glXGetConfig sets value to the attrib value of windows or GLX pixmaps created with respect to
vis. gIXGetConfig returns an error code if it fails for any reason. Otherwise, zero is returned.

attrib is one of the following:
GLX _USE_GL
True if OpenGL rendering is supported by this visual, False otherwise.
GLX_BUFFER_SIZE
Number of bits per color buffer. For RGBA visuals, GLX_ BUFFER SIZE is the sum of
GLX_RED SIZE, GLX GREEN_SIZE, GLX BLUE_SIZE, and GLX_ALPHA_SIZE.
For color index visuals, GLX BUFFER_SIZE is the size of the color indexes.
GLX _LEVEL
Frame buffer level of the visual. Level zero is the default frame buffer. Positive levels
correspond to frame buffers that overlay the default buffer, and negative levels correspond to

frame buffers that underlay the default buffer.

GLX_RGBA

344

OpenGL Reference Manual (Addison-Wesley Publishing Company)

True if color buffers store red, green, blue, and alpha values, False if they store color indexes.
GLX_DOUBLEBUFFER

True if color buffers exist in front/back pairs that can be swapped, False otherwise.
GLX_STEREO

True if color buffers exist in left/right pairs, False otherwise.
GLX_AUX_ BUFFERS

Number of auxiliary color buffers that are available. Zero indicates that no auxiliary color
buffers exist.

GLX_RED SIZE

Number of bits of red stored in each color buffer. Undefined if GLX_ RGBA is False.
GLX_GREEN_SIZE

Number of bits of green stored in each color buffer. Undefined if GLX RGBA is False.
GLX_BLUE_SIZE

Number of bits of blue stored in each color buffer. Undefined if GLX_ RGBA is False.
GLX_ALPHA SIZE

Number of bits of alpha stored in each color buffer. Undefined if GLX RGB is False.
GLX _DEPTH_SIZE

Number of bits in the depth buffer.
GLX_STENCIL_SIZE

Number of bits in the stencil buffer.
GLX_ACCUM_RED SIZE

Number of bits of red stored in the accumulation buffer.
GLX_ACCUM_GREEN SIZE

Number of bits of green stored in the accumulation buffer.

GLX_ACCUM_BLUE_SIZE

345

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Number of bits of blue stored in the accumulation buffer.
GLX_ACCUM_ALPHA SIZE
Number of bits of alpha stored in the accumulation buffer.

The X protocol allows a single visual ID to be instantiated with different numbers of bits per pixel.
Windows or GLX pixmaps that will be rendered with OpenGL, however, must be instantiated with
a color buffer depth of GLX BUFFER_SIZE.

Although a GLX implementation can export many visuals that support OpenGL rendering, it must
support at least two. One is an RGBA visual with at least one color buffer, a stencil buffer of at least
1 bit, a depth buffer of at least 12 bits, and an accumulation buffer. Alpha bitplanes are optional in
this visual. However, its color buffer size must be as great as that of the deepest TrueColor,
DirectColor, PseudoColor, or StaticColor visual supported on level zero, and it must itself be
made available on level zero.

The other required visual is a color index one with at least one color buffer, a stencil buffer of at
least 1 bit, and a depth buffer of at least 12 bits. This visual must have as many color bitplanes as
the deepest PseudoColor or StaticColor visual supported on level zero, and it must itself be made
available on level zero.

Applications are best written to select the visual that most closely meets their requirements.

Creating windows or GLX pixmaps with unnecessary buffers can result in reduced rendering
performance as well as poor resource allocation.

NOTES

XVisuallnfo is defined in Xutil.h. 1t is a structure that includes visual, visuallD, screen, and depth
elements.

ERRORS

GLX NO_EXTENSION is returned if dpy does not support the GLX extension.

GLX BAD SCREEN is returned if the screen of vis does not correspond to a screen.

GLX BAD ATTRIB is returned if attrib is not a valid GLX attribute. GLX BAD_ VISUAL is
returned if vis doesn't support GLX and an attribute other than GLX_USE_GL is requested.

SEE ALSO

"g]XChooseVisual", "glXCreateContext"

346

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glXGetCurrentContext

NAME

glXGetCurrentContext - return the current context

C SPECIFICATION

GLXContext gIXGetCurrentContext(void)

DESCRIPTION

glXGetCurrentContext returns the current context, as specified by giXMakeCurrent. If there is
no current context, NULL is returned. gIXGetCurrentContext returns client-side information. It
does not make a round trip to the server.

SEE ALSO

"g]XCreateContext", "glXMakeCurrent"

glXGetCurrentDrawable

NAME

glXGetCurrentDrawable - return the current drawable

C SPECIFICATION

GLXDrawable gIXGetCurrentDrawable(void)

DESCRIPTION
glXGetCurrentDrawable returns the current drawable, as specified by giIXMakeCurrent. If there

is no current drawable, None is returned. gIXGetCurrentDrawable returns client-side information.
It does not make a round trip to the server.

SEE ALSO

"glXCreateGLXPixmap", "glXMakeCurrent"

347

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glXIntro

NAME

glXIntro - Introduction to OpenGL in the X window system

OVERVIEW

OpenGL is a high-performance 3-D-oriented renderer. It is available in the X window system
through the GLX extension. Use gIXQueryExtension and gIXQueryVersion to establish whether
the GLX extension is supported by an X server, and if so, what version is supported. GLX extended
servers make a subset of their visuals available for OpenGL rendering. Drawables created with these
visuals can also be rendered using the core X renderer and with the renderer of any other X
extension that is compatible with all core X visuals. GLX extends drawables with several buffers
other than the standard color buffer. These buffers include back and auxiliary color buffers, a depth
buffer, a stencil buffer, and a color accumulation buffer. Some or all are included in each X visual
that supports OpenGL. To render using OpenGL into an X drawable, you must first choose a visual
that defines the required OpenGL buffers. gIXChooseVisual can be used to simplify selecting a
compatible visual. If more control of the selection process is required, use XGetVisuallnfo and
glXGetConfig to select among all the available visuals. Use the selected visual to create both a
GLX context and an X drawable. GLX contexts are created with glXCreateContext, and drawables
are created with either XCreateWindow or gIXCreateGLXPixmap. Finally, bind the context and
the drawable together using giIXMakeCurrent. This context/drawable pair becomes the current
context and current drawable, and it is used by all OpenGL commands until giIXMakeCurrent is
called with different arguments. Both core X and OpenGL commands can be used to operate on the
current drawable. The X and OpenGL command streams are not synchronized, however, except at
explicitly created boundaries generated by calling gIXWaitGL, gIXWaitX, XSync, and glFlush.

EXAMPLES

Below is the minimum code required to create an RGBA-format, OpenGL-compatible X window
and clear it to yellow. The code is correct, but it does not include any error checking. Return values
dpy, vi, cx, cmap, and win should all be tested.

#include <GL/glx.h>
#include <GL/gl.h>
#include <unistd.h>

static int attributeList[] = { GLX RGBA, None };
static Bool WaitForNotify (Display *d, XEvent *e, char *arg) {
return (e->type == MapNotify) && (e->xmap.window == (Window)arg) ;

}

int main(int argc, char **argv) {
Display *dpy;
XVisualInfo *vi;
Colormap cmap;
XSetWindowAttributes swa;

348

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Window win;

GLXContext cx;

XEvent event;

/* get a connection */

dpy = XOpenDisplay (0) ;

/* get an appropriate visual */

vi = glXChooseVisual (dpy, DefaultScreen (dpy), attributelist) ;

/* create a GLX context */

cx = glXCreateContext (dpy, vi, 0, GL_FALSE);

/* create a color map */

cmap = XCreateColormap (dpy, RootWindow (dpy, vi->screen),

vi->visual, AllocNone) ;

/* create a window */

swa.colormap = cmap;

swa.border pixel = 0;

swa.event mask = StructureNotifyMask;

win = XCreateWindow (dpy, RootWindow (dpy, vi->screen), 0, 0, 100, 100,
0, vi->depth, InputOutput, vi->visual,
CWBorderPixel | CWColormap | CWEventMask, &swa) ;

XMapWindow (dpy, win) ;

XIfEvent (dpy, &event, WaitForNotify, (char*)win);

/* connect the context to the window */

glXMakeCurrent (dpy, win, cx);

/* clear the buffer */

glClearColor(1,1,0,1);

glClear (GL_COLOR_BUFFER BIT) ;

glFlush() ;

/* wait a while */

sleep(10) ;

NOTES

A color map must be created and passed to XCreateWindow. See the example code above.

A GLX context must be created and attached to an X drawable before OpenGL commands can be
executed. OpenGL commands issued while no context/drawable pair is current are ignored.

Exposure events indicate that all buffers associated with the specified window may be damaged and
should be repainted. Although certain buffers of some visuals on some systems may never require
repainting (the depth buffer, for example), it is incorrect to code assuming that these buffers will not
be damaged.

GLX commands manipulate XVisuallnfo structures rather than pointers to visuals GLX commands
manipulate XVisuallnfo structures rather than pointers to visuals or visual IDs. XVisuallnfo
structures contain visual, visuallD, screen, and depth elements, as well as other X-specific
information.

SEE ALSO

"glFinish", "glFlush" , "glXChooseVisual" , "glXCopyContext" , "glXCreateContext" ,
"g]XCreateGLXPixmap" , "glXDestroyContext" , "glXGetConfig" , "gIXIsDirect" ,
"g|XMakeCurrent" , "glXQueryExtension" , "glXQueryVersion" , "glXSwapBuffers" ,
"g]XUseXFont" , "gIXWaitGL" , "gIXWaitX" , XCreateColormap, XCreateWindow, XSync

349

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glXIsDirect

NAME

glXIsDirect - indicate whether direct rendering is enabled

C SPECIFICATION

Bool gIXIsDirect(Display *dpy, GLXContext ctx)

PARAMETERS
dpy

Specifies the connection to the X server.
clx

Specifies the GLX context that is being queried.

DESCRIPTION

glXIsDirect returns True if ctx is a direct rendering context, False otherwise. Direct rendering
contexts pass rendering commands directly from the calling process's address space to the rendering
system, bypassing the X server. Nondirect rendering contexts pass all rendering commands to the X
server.

ERRORS

GLX Bad_Context is generated if ctx is not a valid GLX context.

SEE ALSO

"g]X CreateContext"

glXMakeCurrent

NAME

glXMakeCurrent - attach a GLX context to a window or a GLX pixmap

350

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

Bool gIXMakeCurrent(Display *dpy, GLXDrawable drawable, GLXContext ctx)

PARAMETERS
dpy
Specifies the connection to the X server.
drawable
Specifies a GLX drawable. Must be either an X window ID or a GLX pixmap ID.
ctx

Specifies a GLX rendering context that is to be attached to drawable.

DESCRIPTION

glXMakeCurrent does two things: It makes ctx the current GLX rendering context of the calling
thread, replacing the previously current context if there was one, and it attaches ctx to a GLX
drawable, either a window or a GLX pixmap. As a result of these two actions, subsequent OpenGL
rendering calls use rendering context ctx to modify GLX drawable drawable. Because
glXMakeCurrent always replaces the current rendering context with ctx, there can be only one
current context per thread.

Pending commands to the previous context, if any, are flushed before it is released.

The first time ctx is made current to any thread, its viewport is set to the full size of drawable.
Subsequent calls by any thread to gIXMakeCurrent with czx have no effect on its viewport.

To release the current context without assigning a new one, call giXMakeCurrent with drawable
and ctx set to None and NULL respectively.

glXMakeCurrent returns True if it is successful, False otherwise. If False is returned, the
previously current rendering context and drawable (if any) remain unchanged.

NOTES

A process 1s a single-execution environment, implemented in a single address space, consisting of
one or more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain separate

program counters, stack spaces, and other related global data. A thread that is the only member of
its subprocess group is equivalent to a process.

351

OpenGL Reference Manual (Addison-Wesley Publishing Company)

ERRORS

BadMatch is generated if drawable was not created with the same X screen and visual as ctx. It is
also generated if drawable is None and ctx is not None.

BadAccess is generated if ctx was current to another thread at the time gIXMakeCurrent was
called.

GLX Bad_Drawable is generated if drawable is not a valid GLX drawable.
GLX Bad_Context is generated if ctx is not a valid GLX context.

GLX Bad_Context_State is generated if the rendering context current to the calling thread has
OpenGL renderer state GL_ FEEDBACK or GL. SELECT.

GLX Bad_Current_Window is generated if there are pending OpenGL commands for the
previous context and the current drawable is a window that is no longer valid.

BadAlloc may be generated if the server has delayed allocation of ancillary buffers until
glXMakeCurrent is called, only to find that it has insufficient resources to complete the allocation.

SEE ALSO

"g] X CreateContext", "glXCreateGLXPixmap"

glXQueryExtension

NAME

glXQueryExtension - indicate whether the GLX extension is supported

C SPECIFICATION

Bool gIXQueryExtension(Display *dpy, int *errorBase, int *eventBase)

PARAMETERS

dpy

Specifies the connection to the X server.

errorBase

352

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Returns the base error code of the GLX server extension.
eventBase

Returns the base event code of the GLX server extension.

DESCRIPTION

glXQueryExtension returns True if the X server of connection dpy supports the GLX extension,
False otherwise. If True is returned, then errorBase and eventBase return the error base and event
base of the GLX extension. Otherwise, errorBase and eventBase are unchanged.

errorBase and eventBase do not return values if they are specified as NULL.

NOTES

eventBase 1s included for future extensions. GLX does not currently define any events.

SEE ALSO

"glXQueryVersion"

glXQueryVersion

NAME

glXQueryVersion - return the version numbers of the GLX extension

C SPECIFICATION

Bool gIXQueryVersion(Display *dpy, int *major, int *minor)

PARAMETERS

dpy
Specifies the connection to the X server.
major

Returns the major version number of the GLX server extension.

353

OpenGL Reference Manual (Addison-Wesley Publishing Company)

minor

Returns the minor version number of the GLX server extension.

DESCRIPTION

glXQueryVersion returns the major and minor version numbers of the GLX extension
implemented by the server associated with connection dpy. Implementations with the same major
version number are upward compatible, meaning that the implementation with the higher minor

number is a superset of the version with the lower minor number.

major and minor do not return values if they are specified as NULL.

ERRORS

glXQueryVersion returns False if it fails, True otherwise. major and minor are not updated when
False is returned.

SEE ALSO

"glXQueryExtension"

glXSwapBuffers

NAME

glXSwapBuffers - make back buffer visible

C SPECIFICATION

void gIXSwapBuffers(Display *dpy, GLXDrawable drawable)

PARAMETERS

dpy

Specifies the connection to the X server.

drawable

354

OpenGL Reference Manual (Addison-Wesley Publishing Company)

Specifies the window whose buffers are to be swapped.

DESCRIPTION

glXSwapBuffers promotes the contents of the back buffer of drawable to become the contents of
the front buffer of drawable. The contents of the back buffer then become undefined. The update
typically takes place during the vertical retrace of the monitor, rather than immediately after
glXSwapBuffers is called. All GLX rendering contexts share the same notion of which are front
buffers and which are back buffers.

An implicit glFlush is done by gIXSwapBuffers before it returns. Subsequent OpenGL commands
can be issued immediately after calling gIXSwapBuffers, but are not executed until the buffer

exchange is completed.

If drawable was not created with respect to a double-buffered visual, gIXSwapBuffers has no
effect, and no error is generated.

NOTES
Synchronization of multiple GLX contexts rendering to the same double-buffered window is the

responsibility of the clients. The X Synchronization Extension can be used to facilitate such
cooperation.

ERRORS
GLX Bad_Drawable is generated if drawable is not a valid GLX drawable.

GLX Bad_Current_Window is generated if dpy and drawable are respectively the display and
drawable associated with the current context of the calling thread, and drawable identifies a window
that is no longer valid.

SEE ALSO

"glFlush"

glXUseXFont

NAME

glXUseXFont - create bitmap display lists from an X font

355

OpenGL Reference Manual (Addison-Wesley Publishing Company)

C SPECIFICATION

void gIXUseXFont(Font font, int first, int count, int listBase)

PARAMETERS

font

Specifies the font from which character glyphs are to be taken.
first

Specifies the index of the first glyph to be taken.
count

Specifies the number of glyphs to be taken.
listBase

Specifies the index of the first display list to be generated.

DESCRIPTION

glXUseXFont generates count display lists, named /istBase through listBase + count - 1, each
containing a single glBitmap command. The parameters of the gilBitmap command of display list
listBase + i are derived from glyph first + i. Bitmap parameters xorig, yorig, width, and height are
computed from font metrics as descent-1, -lbearing,rbearing-lbearing, and ascent+descent,
respectively. xmove is taken from the glyph's width metric, and ymove is set to zero. Finally, the
glyph's image is converted to the appropriate format for giBitmap.

Using glXUseXFont may be more efficient than accessing the X font and generating the display
lists explicitly, both because the display lists are created on the server without requiring a round trip
of the glyph data, and because the server may choose to delay the creation of each bitmap until it is
accessed.

Empty display lists are created for all glyphs that are requested and are not defined in font.
glXUseXFont is ignored if there is no current GLX context.

ERRORS

BadFont is generated if font is not a valid font.

GLX Bad_Context_State is generated if the current GLX context is in display-list construction
mode.

356

OpenGL Reference Manual (Addison-Wesley Publishing Company)

GLX Bad_Current_Window is generated if the drawable associated with the current context of
the calling thread is a window, and that window is no longer valid.

SEE ALSO

"glBitmap", "glXMakeCurrent"

gIXWaitGL

NAME

gIXWaitGL - complete GL execution prior to subsequent X calls

C SPECIFICATION

void gIXWaitGL(void)

DESCRIPTION

OpenGL rendering calls made prior to gIXWaitGL are guaranteed to be executed before X
rendering calls made after gIXWaitGL. Although this same result can be achieved using glFinish,
glXWaitGL does not require a round trip to the server, and it is therefore more efficient in cases

where client and server are on separate machines.

gIXWaitGL is ignored if there is no current GLX context.

NOTES

gIXWaitGL may or may not flush the X stream.

ERRORS

GLX_Bad_Current_Window is generated if the drawable associated with the current context of
the calling thread is a window, and that window is no longer valid.

SEE ALSO

"glFinish", "glFlush" , "glXWaitX" , XSync

357

OpenGL Reference Manual (Addison-Wesley Publishing Company)

glXWaitX

NAME

gIXWaitX - complete X execution prior to subsequent OpenGL calls

C SPECIFICATION

void gIXWaitX(void)

DESCRIPTION

X rendering calls made prior to gIXWaitX are guaranteed to be executed before OpenGL rendering
calls made after gIXWaitX. Although this same result can be achieved using XSync, gIXWaitX
does not require a round trip to the server, and it is therefore more efficient in cases where client and

server are on separate machines.

glXWaitX is ignored if there is no current GLX context.

NOTES

glXWaitX may or may not flush the OpenGL stream.

ERRORS

GLX Bad_Current_Window is generated if the drawable associated with the current context of
the calling thread is a window, and that window is no longer valid.

SEE ALSO

"glFinish", "glFlush" , "gIXWaitGL" , XSync

358

	Contents
	OpenGL Reference Manual
	The Official Reference Document for OpenGL, Release 1

	Preface
	What You Should Know Before Reading This Manual
	Acknowledgments

	Chapter 1�Introduction to OpenGL
	OpenGL Fundamentals
	Primitives and Commands
	Procedural versus Descriptive
	Execution Model

	Basic OpenGL Operation

	Chapter 2�Overview of Commands and Routines
	OpenGL Processing Pipeline
	Vertices
	Input Data
	Matrix Transformations
	Lighting and Coloring
	Generating Texture Coordinates
	Primitive Assembly

	Primitives
	Clipping
	Transforming to Window Coordinates
	Rasterization

	Fragments
	Pixel Ownership Test
	Scissor Test
	Alpha Test
	Stencil Test
	Depth Buffer Test
	Blending
	Dithering
	Logical Operations

	Pixels
	Frame Buffer Operations
	Reading or Copying Pixels

	Additional OpenGL Commands
	Using Evaluators
	Performing Selection and Feedback
	Selection
	Feedback

	Using Display Lists
	Managing Modes and Execution
	Obtaining State Information

	OpenGL Utility Library
	Manipulating Images for Use in Texturing
	Transforming Coordinates
	Polygon Tessellation
	Rendering Spheres, Cylinders, and Disks
	NURBS Curves and Surfaces
	Handling Errors

	OpenGL Extension to the X Window System
	Initialization
	Controlling Rendering
	Managing an OpenGL Rendering Context
	Off-Screen Rendering
	Synchronizing Execution
	Swapping Buffers
	Using an X Font

	Chapter 3�Summary of Commands and Routines
	Notation
	OpenGL Commands
	Primitives
	Coordinate Transformation
	Coloring and Lighting
	Clipping
	Rasterization
	Pixel Operations
	Texture Mapping
	Fog
	Frame Buffer Operations
	Evaluators
	Selection and Feedback
	Display Lists
	Modes and Execution
	State Queries

	GLU Routines
	Texture Images
	Coordinate Transformation
	Polygon Tessellation
	Quadric Objects
	NURBS Curves and Surfaces
	Error Handling

	GLX Routines
	Initialization
	Controlling Rendering

	Chapter 4�Defined Constants and Associated Commands
	Chapter 5�OpenGL Reference Pages
	glAccum
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glAlphaFunc
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glBegin
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	DESCRIPTION
	ERRORS
	SEE ALSO

	glBitmap
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glBlendFunc
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLES
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glCallList
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ASSOCIATED GETS
	SEE ALSO

	glCallLists
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ASSOCIATED GETS
	SEE ALSO

	glClear
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glClearAccum
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glClearColor
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glClearDepth
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glClearIndex
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glClearStencil
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glClipPlane
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glColor
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ASSOCIATED GETS
	SEE ALSO

	glColorMask
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glColorMaterial
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glCopyPixels
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLES
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glCullFace
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glDeleteLists
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	glDepthFunc
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glDepthMask
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glDepthRange
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glDrawBuffer
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glDrawPixels
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glEdgeFlag
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ASSOCIATED GETS
	SEE ALSO

	glEnable
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	glEvalCoord
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ASSOCIATED GETS
	SEE ALSO

	glEvalMesh
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glEvalPoint
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ASSOCIATED GETS
	SEE ALSO

	glFeedbackBuffer
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glFinish
	NAME
	C SPECIFICATION
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glFlush
	NAME
	C SPECIFICATION
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glFog
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glFrontFace
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glFrustum
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glGenLists
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glGet
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	glGetClipPlane
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glGetError
	NAME
	C SPECIFICATION
	DESCRIPTION
	ERRORS

	glGetLight
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glGetMap
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glGetMaterial
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glGetPixelMap
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glGetPolygonStipple
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glGetString
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS

	glGetTexEnv
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glGetTexGen
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glGetTexImage
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glGetTexLevelParameter
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glGetTexParameter
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glHint
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS

	glIndex
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ASSOCIATED GETS
	SEE ALSO

	glIndexMask
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glInitNames
	NAME
	C SPECIFICATION
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glIsEnabled
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glIsList
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	glLight
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glLightModel
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glLineStipple
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glLineWidth
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glListBase
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glLoadIdentity
	NAME
	C SPECIFICATION
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glLoadMatrix
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glLoadName
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glLogicOp
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glMap1
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glMap2
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glMapGrid
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glMaterial
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glMatrixMode
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glMultMatrix
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glNewList
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glNormal
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ASSOCIATED GETS
	SEE ALSO

	glOrtho
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPassThrough
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPixelMap
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPixelStore
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPixelTransfer
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPixelZoom
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPointSize
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPolygonMode
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLES
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPolygonStipple
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPushAttrib
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPushMatrix
	NAME
	C SPECIFICATION
	C SPECIFICATION
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glPushName
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glRasterPos
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glReadBuffer
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glReadPixels
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glRect
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	glRenderMode
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glRotate
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glScale
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glScissor
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glSelectBuffer
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glShadeModel
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glStencilFunc
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glStencilMask
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glStencilOp
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glTexCoord
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ASSOCIATED GETS
	SEE ALSO

	glTexEnv
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glTexGen
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glTexImage1D
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glTexImage2D
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glTexParameter
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glTranslate
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	glVertex
	NAME
	C SPECIFICATION
	PARAMETERS
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	SEE ALSO

	glViewport
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	ASSOCIATED GETS
	SEE ALSO

	Chapter 6�GLU Reference Pages
	gluBeginCurve
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	gluBeginPolygon
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	gluBeginSurface
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	gluBeginTrim
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	gluBuild1DMipmaps
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluBuild2DMipmaps
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluCylinder
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluDeleteNurbsRenderer
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluDeleteQuadric
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluDeleteTess
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluDisk
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluErrorString
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluGetNurbsProperty
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluLoadSamplingMatrices
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluLookAt
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluNewNurbsRenderer
	NAME
	C SPECIFICATION
	DESCRIPTION
	SEE ALSO

	gluNewQuadric
	NAME
	C SPECIFICATION
	DESCRIPTION
	SEE ALSO

	gluNewTess
	NAME
	C SPECIFICATION
	DESCRIPTION
	SEE ALSO

	gluNextContour
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	gluNurbsCallback
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluNurbsCurve
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	gluNurbsProperty
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluNurbsSurface
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	gluOrtho2D
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluPartialDisk
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluPerspective
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluPickMatrix
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	gluProject
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluPwlCurve
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	glgluQuadricCallback
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluQuadricDrawStyle
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluQuadricNormals
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluQuadricOrientation
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluQuadricTexture
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluScaleImage
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluSphere
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	gluTessCallback
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	gluTessVertex
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLE
	SEE ALSO

	gluUnProject
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	SEE ALSO

	Chapter 7�GLX Reference Pages
	glXChooseVisual
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	EXAMPLES
	NOTES
	ERRORS
	SEE ALSO

	glXCopyContext
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glXCreateContext
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glXCreateGLXPixmap
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glXDestroyContext
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	glXDestroyGLXPixmap
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	glXGetConfig
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glXGetCurrentContext
	NAME
	C SPECIFICATION
	DESCRIPTION
	SEE ALSO

	glXGetCurrentDrawable
	NAME
	C SPECIFICATION
	DESCRIPTION
	SEE ALSO

	glXIntro
	NAME
	OVERVIEW
	EXAMPLES
	NOTES
	SEE ALSO

	glXIsDirect
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	glXMakeCurrent
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glXQueryExtension
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	SEE ALSO

	glXQueryVersion
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	glXSwapBuffers
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glXUseXFont
	NAME
	C SPECIFICATION
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	glXWaitGL
	NAME
	C SPECIFICATION
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

	glXWaitX
	NAME
	C SPECIFICATION
	DESCRIPTION
	NOTES
	ERRORS
	SEE ALSO

